{"title":"球面上的无导数几何优化算法","authors":"Yannan Chen","doi":"10.4208/csiam-am.2020-0026","DOIUrl":null,"url":null,"abstract":"Optimization on a unit sphere finds crucial applications in science and engineering. However, derivatives of the objective function may be difficult to compute or corrupted by noises, or even not available in many applications. Hence, we propose a Derivative-Free Geometric Algorithm (DFGA) which, to the best of our knowledge, is the first derivative-free algorithm that takes trust region framework and explores the spherical geometry to solve the optimization problem with a spherical constraint. Nice geometry of the spherical surface allows us to pursue the optimization at each iteration in a local tangent space of the sphere. Particularly, by applying Householder and Cayley transformations, DFGA builds a quadratic trust region model on the local tangent space such that the local optimization can essentially be treated as an unconstrained optimization. Under mild assumptions, we show that there exists a subsequence of the iterates generated by DFGA converging to a stationary point of this spherical optimization. Furthermore, under the Lojasiewicz property, we show that all the iterates generated by DFGA will converge with at least a linear or sublinear convergence rate. Our numerical experiments on solving the spherical location problems, subspace clustering and image segmentation problems resulted from hypergraph partitioning, indicate DFGA is very robust and efficient for solving optimization on a sphere without using derivatives.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Derivative-Free Geometric Algorithm for Optimization on a Sphere\",\"authors\":\"Yannan Chen\",\"doi\":\"10.4208/csiam-am.2020-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization on a unit sphere finds crucial applications in science and engineering. However, derivatives of the objective function may be difficult to compute or corrupted by noises, or even not available in many applications. Hence, we propose a Derivative-Free Geometric Algorithm (DFGA) which, to the best of our knowledge, is the first derivative-free algorithm that takes trust region framework and explores the spherical geometry to solve the optimization problem with a spherical constraint. Nice geometry of the spherical surface allows us to pursue the optimization at each iteration in a local tangent space of the sphere. Particularly, by applying Householder and Cayley transformations, DFGA builds a quadratic trust region model on the local tangent space such that the local optimization can essentially be treated as an unconstrained optimization. Under mild assumptions, we show that there exists a subsequence of the iterates generated by DFGA converging to a stationary point of this spherical optimization. Furthermore, under the Lojasiewicz property, we show that all the iterates generated by DFGA will converge with at least a linear or sublinear convergence rate. Our numerical experiments on solving the spherical location problems, subspace clustering and image segmentation problems resulted from hypergraph partitioning, indicate DFGA is very robust and efficient for solving optimization on a sphere without using derivatives.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.2020-0026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.2020-0026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Derivative-Free Geometric Algorithm for Optimization on a Sphere
Optimization on a unit sphere finds crucial applications in science and engineering. However, derivatives of the objective function may be difficult to compute or corrupted by noises, or even not available in many applications. Hence, we propose a Derivative-Free Geometric Algorithm (DFGA) which, to the best of our knowledge, is the first derivative-free algorithm that takes trust region framework and explores the spherical geometry to solve the optimization problem with a spherical constraint. Nice geometry of the spherical surface allows us to pursue the optimization at each iteration in a local tangent space of the sphere. Particularly, by applying Householder and Cayley transformations, DFGA builds a quadratic trust region model on the local tangent space such that the local optimization can essentially be treated as an unconstrained optimization. Under mild assumptions, we show that there exists a subsequence of the iterates generated by DFGA converging to a stationary point of this spherical optimization. Furthermore, under the Lojasiewicz property, we show that all the iterates generated by DFGA will converge with at least a linear or sublinear convergence rate. Our numerical experiments on solving the spherical location problems, subspace clustering and image segmentation problems resulted from hypergraph partitioning, indicate DFGA is very robust and efficient for solving optimization on a sphere without using derivatives.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.