外粘结FRP和FRP锚固对单向钢筋混凝土构件的爆破改造

IF 2.1 Q2 ENGINEERING, CIVIL International Journal of Protective Structures Pub Date : 2022-04-15 DOI:10.1177/20414196221087347
C. Jackson, Eric Jacques, M. Saatcioglu
{"title":"外粘结FRP和FRP锚固对单向钢筋混凝土构件的爆破改造","authors":"C. Jackson, Eric Jacques, M. Saatcioglu","doi":"10.1177/20414196221087347","DOIUrl":null,"url":null,"abstract":"This paper presents the results of nine as-built and carbon fiber reinforced polymer (CFRP) retrofitted reinforced concrete panels subjected to simulated blast loading using a pneumatically operated shock tube. The objective of the study was to characterize the blast response of CFRP retrofitted reinforced concrete panels, with and without supplemental mechanical anchorage applied to the CFRP. The results indicate that retrofitting can significantly increase the strength and stiffness of reinforced concrete flexure members and greatly enhance the displacement time-history response over non-retrofitted members. Debonding of the externally bonded CFRP was the failure mode for all retrofitted members. FRP anchors, designed to prevent or delay debonding failures through mechanical end-anchorage, were found to substantially enhance the performance of panels experiencing critical diagonal crack debonding. However, the FRP anchors were found to have no substantial effect on retrofit performance for the case plate-end interfacial debonding failures. In addition, the displacement time-histories for as-built and FRP retrofitted panel obtained through detail single degree of freedom analysis were found correlate well with those obtained experimentally. Finally, a discussion on the practical considerations of using externally bonded FRP retrofits to resist blast loads and recommendations for protective design are presented.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":"370 ","pages":"209 - 235"},"PeriodicalIF":2.1000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Blast retrofit of one-way reinforced concrete members using externally bonded FRP and FRP anchorage\",\"authors\":\"C. Jackson, Eric Jacques, M. Saatcioglu\",\"doi\":\"10.1177/20414196221087347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of nine as-built and carbon fiber reinforced polymer (CFRP) retrofitted reinforced concrete panels subjected to simulated blast loading using a pneumatically operated shock tube. The objective of the study was to characterize the blast response of CFRP retrofitted reinforced concrete panels, with and without supplemental mechanical anchorage applied to the CFRP. The results indicate that retrofitting can significantly increase the strength and stiffness of reinforced concrete flexure members and greatly enhance the displacement time-history response over non-retrofitted members. Debonding of the externally bonded CFRP was the failure mode for all retrofitted members. FRP anchors, designed to prevent or delay debonding failures through mechanical end-anchorage, were found to substantially enhance the performance of panels experiencing critical diagonal crack debonding. However, the FRP anchors were found to have no substantial effect on retrofit performance for the case plate-end interfacial debonding failures. In addition, the displacement time-histories for as-built and FRP retrofitted panel obtained through detail single degree of freedom analysis were found correlate well with those obtained experimentally. Finally, a discussion on the practical considerations of using externally bonded FRP retrofits to resist blast loads and recommendations for protective design are presented.\",\"PeriodicalId\":46272,\"journal\":{\"name\":\"International Journal of Protective Structures\",\"volume\":\"370 \",\"pages\":\"209 - 235\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Protective Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20414196221087347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196221087347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了九块竣工和碳纤维增强聚合物(CFRP)加固的钢筋混凝土面板在使用气动冲击管模拟爆炸载荷下的试验结果。本研究的目的是表征CFRP加固钢筋混凝土面板的爆破响应,在CFRP上使用和不使用补充机械锚固。结果表明,与未加固构件相比,加固后的钢筋混凝土受弯构件强度和刚度显著提高,位移时程响应显著增强。外部粘结CFRP的脱胶是所有改造构件的失效模式。设计用于通过机械端部锚固防止或延迟脱胶故障的FRP锚,被发现可以显著提高经历临界对角裂纹脱胶的面板的性能。然而,对于板端界面脱胶失效的情况,FRP锚固件对改造性能没有实质性影响。此外,通过详细的单自由度分析获得的竣工和FRP改造面板的位移时程与实验结果吻合良好。最后,讨论了使用外部粘结玻璃钢改造件抵抗爆炸载荷的实际考虑,并提出了防护设计建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blast retrofit of one-way reinforced concrete members using externally bonded FRP and FRP anchorage
This paper presents the results of nine as-built and carbon fiber reinforced polymer (CFRP) retrofitted reinforced concrete panels subjected to simulated blast loading using a pneumatically operated shock tube. The objective of the study was to characterize the blast response of CFRP retrofitted reinforced concrete panels, with and without supplemental mechanical anchorage applied to the CFRP. The results indicate that retrofitting can significantly increase the strength and stiffness of reinforced concrete flexure members and greatly enhance the displacement time-history response over non-retrofitted members. Debonding of the externally bonded CFRP was the failure mode for all retrofitted members. FRP anchors, designed to prevent or delay debonding failures through mechanical end-anchorage, were found to substantially enhance the performance of panels experiencing critical diagonal crack debonding. However, the FRP anchors were found to have no substantial effect on retrofit performance for the case plate-end interfacial debonding failures. In addition, the displacement time-histories for as-built and FRP retrofitted panel obtained through detail single degree of freedom analysis were found correlate well with those obtained experimentally. Finally, a discussion on the practical considerations of using externally bonded FRP retrofits to resist blast loads and recommendations for protective design are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
25.00%
发文量
48
期刊最新文献
Numerical modeling and simulation of cable barriers under vehicular impacts on a sloped median Experimental study of the low-velocity impact behavior of open-cell aluminum foam made by the infiltration method Wave-absorbing performance of alumina thin-walled hollow particles under freezing condition On the penetration of rigid spheres in metallic targets High-velocity impact experiments and quantitative damage evaluation for finite ultra-high-performance concrete targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1