{"title":"基于深度学习的MANET安全通信看门狗恶意节点检测与隔离","authors":"Narmadha A. S., M. S, D. S. N.","doi":"10.1080/00051144.2023.2241766","DOIUrl":null,"url":null,"abstract":"Mobile Ad-hoc Networks (MANETs) are wireless networks formed dynamically by connecting or leaving nodes to and from the network without any fixed infrastructure. These categories of wireless networks are susceptible to different attacks based on their dynamic topological structure. Due to this, security is a primary constraint in MANETs to preserve communication between mobile nodes. A Deep Neural Learned Projective Pursuit Regression-based Watchdog Malicious Node Detection and Isolation (DNLPPR-WMNDI) technique is proposed and modelled in this paper to improve the security feature of MANETs. The newly proposed DNLPPR-WMNDI technique initially selects the neighbouring nodes by applying the projection pursuit regression function. In multicasting, the route paths are established through the intermediate node with the help of control commands named RREQ and RREP. After then, Watchdog Malicious Node Detection and Isolation (WMNDI) technique is applied to detect malicious nodes based on the data packet forwarding time. Basically, a malicious node is affected by a node isolation attack. For better communication, a malicious node is isolated from the network and multicast routing is carried out by selecting the next neighbouring node and this improves the communication security. Simulation is done for the developed technique based on different performance metrics.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"14 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Watchdog malicious node detection and isolation using deep learning for secured communication in MANET\",\"authors\":\"Narmadha A. S., M. S, D. S. N.\",\"doi\":\"10.1080/00051144.2023.2241766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Ad-hoc Networks (MANETs) are wireless networks formed dynamically by connecting or leaving nodes to and from the network without any fixed infrastructure. These categories of wireless networks are susceptible to different attacks based on their dynamic topological structure. Due to this, security is a primary constraint in MANETs to preserve communication between mobile nodes. A Deep Neural Learned Projective Pursuit Regression-based Watchdog Malicious Node Detection and Isolation (DNLPPR-WMNDI) technique is proposed and modelled in this paper to improve the security feature of MANETs. The newly proposed DNLPPR-WMNDI technique initially selects the neighbouring nodes by applying the projection pursuit regression function. In multicasting, the route paths are established through the intermediate node with the help of control commands named RREQ and RREP. After then, Watchdog Malicious Node Detection and Isolation (WMNDI) technique is applied to detect malicious nodes based on the data packet forwarding time. Basically, a malicious node is affected by a node isolation attack. For better communication, a malicious node is isolated from the network and multicast routing is carried out by selecting the next neighbouring node and this improves the communication security. Simulation is done for the developed technique based on different performance metrics.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2241766\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2241766","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Watchdog malicious node detection and isolation using deep learning for secured communication in MANET
Mobile Ad-hoc Networks (MANETs) are wireless networks formed dynamically by connecting or leaving nodes to and from the network without any fixed infrastructure. These categories of wireless networks are susceptible to different attacks based on their dynamic topological structure. Due to this, security is a primary constraint in MANETs to preserve communication between mobile nodes. A Deep Neural Learned Projective Pursuit Regression-based Watchdog Malicious Node Detection and Isolation (DNLPPR-WMNDI) technique is proposed and modelled in this paper to improve the security feature of MANETs. The newly proposed DNLPPR-WMNDI technique initially selects the neighbouring nodes by applying the projection pursuit regression function. In multicasting, the route paths are established through the intermediate node with the help of control commands named RREQ and RREP. After then, Watchdog Malicious Node Detection and Isolation (WMNDI) technique is applied to detect malicious nodes based on the data packet forwarding time. Basically, a malicious node is affected by a node isolation attack. For better communication, a malicious node is isolated from the network and multicast routing is carried out by selecting the next neighbouring node and this improves the communication security. Simulation is done for the developed technique based on different performance metrics.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.