铜绿假单胞菌的耐药机制及其在兽医科学和公共卫生领域的多管齐下的防治方法综述

Q2 Agricultural and Biological Sciences International Journal of Agriculture and Biology Pub Date : 2021-07-01 DOI:10.17957/ijab/15.1801
B. Mustafa
{"title":"铜绿假单胞菌的耐药机制及其在兽医科学和公共卫生领域的多管齐下的防治方法综述","authors":"B. Mustafa","doi":"10.17957/ijab/15.1801","DOIUrl":null,"url":null,"abstract":"Pseudomonas aeruginosa is one of the most important nosocomial pathogens associated with a variety of medical and veterinary infections and therefore, it presents a major public health threat. Different classes of antibiotics are being used to treat its infections which are increasing selective pressure to multi-drug resistance development. Resistance to antibiotics in P. aeruginosa is due to many of the common and unique mechanisms which include: reducing membrane permeability, modification or inactivation of antibiotics, alteration of enzymes, modification of target sites and over-expression of efflux systems. Over or under expression of the genes of porin channels and components of efflux systems play a major role in the resistance mechanisms of P. aeruginosa. To overcome the problem of the emergence of antibiotic resistance, many new strategies are being employed to control infections caused by P. aeruginosa. These include the use of herbs/medicinal plants and phage therapy. With the advent of modern technology, the molecular mechanisms of these alternative therapies are being elucidated and may be used in future to treat P. aeruginosa infections in humans and veterinary clinics. This review thus highlights the mechanisms of antibiotic resistance of P. aeruginosa against the commonly used antimicrobials and also some alternative strategies to control P. aeruginosa infection. © 2021 Friends Science Publishers","PeriodicalId":13769,"journal":{"name":"International Journal of Agriculture and Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa and a Multi-Pronged Approach to Combat its Infection in Veterinary Science and Public Health: A Review\",\"authors\":\"B. Mustafa\",\"doi\":\"10.17957/ijab/15.1801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudomonas aeruginosa is one of the most important nosocomial pathogens associated with a variety of medical and veterinary infections and therefore, it presents a major public health threat. Different classes of antibiotics are being used to treat its infections which are increasing selective pressure to multi-drug resistance development. Resistance to antibiotics in P. aeruginosa is due to many of the common and unique mechanisms which include: reducing membrane permeability, modification or inactivation of antibiotics, alteration of enzymes, modification of target sites and over-expression of efflux systems. Over or under expression of the genes of porin channels and components of efflux systems play a major role in the resistance mechanisms of P. aeruginosa. To overcome the problem of the emergence of antibiotic resistance, many new strategies are being employed to control infections caused by P. aeruginosa. These include the use of herbs/medicinal plants and phage therapy. With the advent of modern technology, the molecular mechanisms of these alternative therapies are being elucidated and may be used in future to treat P. aeruginosa infections in humans and veterinary clinics. This review thus highlights the mechanisms of antibiotic resistance of P. aeruginosa against the commonly used antimicrobials and also some alternative strategies to control P. aeruginosa infection. © 2021 Friends Science Publishers\",\"PeriodicalId\":13769,\"journal\":{\"name\":\"International Journal of Agriculture and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agriculture and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17957/ijab/15.1801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agriculture and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17957/ijab/15.1801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

摘要

铜绿假单胞菌是与各种医学和兽医感染相关的最重要的医院病原体之一,因此,它对公众健康构成了重大威胁。不同种类的抗生素被用于治疗其感染,这增加了对多药耐药性发展的选择性压力。铜绿假单胞菌对抗生素的耐药性是由许多常见和独特的机制引起的,包括:降低膜通透性、抗生素的修饰或失活、酶的改变、靶位点的修饰和外排系统的过度表达。在铜绿假单胞菌的耐药机制中,通道蛋白基因和外排系统成分的过表达或低表达起着重要作用。为了克服抗生素耐药性出现的问题,许多新的策略被用来控制由铜绿假单胞菌引起的感染。其中包括使用草药/药用植物和噬菌体疗法。随着现代技术的出现,这些替代疗法的分子机制正在被阐明,并可能在未来用于治疗人类和兽医诊所的铜绿假单胞菌感染。因此,这篇综述强调了铜绿假单胞菌对常用抗菌药物的耐药性机制,以及控制铜绿假单胞杆菌感染的一些替代策略。©2021 Friends Science出版社
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa and a Multi-Pronged Approach to Combat its Infection in Veterinary Science and Public Health: A Review
Pseudomonas aeruginosa is one of the most important nosocomial pathogens associated with a variety of medical and veterinary infections and therefore, it presents a major public health threat. Different classes of antibiotics are being used to treat its infections which are increasing selective pressure to multi-drug resistance development. Resistance to antibiotics in P. aeruginosa is due to many of the common and unique mechanisms which include: reducing membrane permeability, modification or inactivation of antibiotics, alteration of enzymes, modification of target sites and over-expression of efflux systems. Over or under expression of the genes of porin channels and components of efflux systems play a major role in the resistance mechanisms of P. aeruginosa. To overcome the problem of the emergence of antibiotic resistance, many new strategies are being employed to control infections caused by P. aeruginosa. These include the use of herbs/medicinal plants and phage therapy. With the advent of modern technology, the molecular mechanisms of these alternative therapies are being elucidated and may be used in future to treat P. aeruginosa infections in humans and veterinary clinics. This review thus highlights the mechanisms of antibiotic resistance of P. aeruginosa against the commonly used antimicrobials and also some alternative strategies to control P. aeruginosa infection. © 2021 Friends Science Publishers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Agriculture and Biology
International Journal of Agriculture and Biology AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.70
自引率
0.00%
发文量
40
审稿时长
5 months
期刊介绍: Information not localized
期刊最新文献
The Possible Protective Effect of Luteolin in a Thioacetamide Rat Model of Testicular Toxicity Improvement of Micropropagation through Combination of Plant Growth Regulators in Indonesian Sorghum Hybrid Cultivar ‘MARKAZ-2019’: A Spring Wheat Variety for Rainfed Areas of Pakistan Field and In Vitro Evaluation of Mandarin Cultivars Resistance to Alternaria alternata Effects of Threonine Supplementation in Low Protein Diet on Broilers Growth Performance and Biochemical Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1