{"title":"使用图论度量研究维基百科数学基本页面","authors":"Sajidah Mahmood","doi":"10.15849/ijasca.220328.10","DOIUrl":null,"url":null,"abstract":"Abstract COVID-19 pandemic enforced students in schools and universities all around the world to study using the online and blinded learning. In these learning models, students depend on the Internet for information searching of different scientific essentials to improve their skills and to overcome the gap of facing instructors. One of the most popular sources of information is Wikipedia. In this work, we attempt to study the relations of different math essential pages of Wikipedia to find the relation between these topics. A graph has been constructed for these pages. The graph theoretical metrics, such as, centrality, edge weights and clustering coefficient have been extracted of the constructed graph. The extracted values have been investigated to gain more insights of the math topics that should be studied first. The extracted results show that the in-degree property of the articles and the betweenness value of these articles are correlated. Moreover, there is no relation between the in /out-degree of the pages. Finally, the constructed graph has a small average shortest path and a high global cluster coefficient. This proves that the constructed graph follows the small world phenomenon. Keywords: Graph metrics, Math essentials, Gephi, Small world phenomenon, Directed graph","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":"100 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the Wikipedia Math Essential Pages using Graph Theory Metrics\",\"authors\":\"Sajidah Mahmood\",\"doi\":\"10.15849/ijasca.220328.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract COVID-19 pandemic enforced students in schools and universities all around the world to study using the online and blinded learning. In these learning models, students depend on the Internet for information searching of different scientific essentials to improve their skills and to overcome the gap of facing instructors. One of the most popular sources of information is Wikipedia. In this work, we attempt to study the relations of different math essential pages of Wikipedia to find the relation between these topics. A graph has been constructed for these pages. The graph theoretical metrics, such as, centrality, edge weights and clustering coefficient have been extracted of the constructed graph. The extracted values have been investigated to gain more insights of the math topics that should be studied first. The extracted results show that the in-degree property of the articles and the betweenness value of these articles are correlated. Moreover, there is no relation between the in /out-degree of the pages. Finally, the constructed graph has a small average shortest path and a high global cluster coefficient. This proves that the constructed graph follows the small world phenomenon. Keywords: Graph metrics, Math essentials, Gephi, Small world phenomenon, Directed graph\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\"100 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.220328.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220328.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Studying the Wikipedia Math Essential Pages using Graph Theory Metrics
Abstract COVID-19 pandemic enforced students in schools and universities all around the world to study using the online and blinded learning. In these learning models, students depend on the Internet for information searching of different scientific essentials to improve their skills and to overcome the gap of facing instructors. One of the most popular sources of information is Wikipedia. In this work, we attempt to study the relations of different math essential pages of Wikipedia to find the relation between these topics. A graph has been constructed for these pages. The graph theoretical metrics, such as, centrality, edge weights and clustering coefficient have been extracted of the constructed graph. The extracted values have been investigated to gain more insights of the math topics that should be studied first. The extracted results show that the in-degree property of the articles and the betweenness value of these articles are correlated. Moreover, there is no relation between the in /out-degree of the pages. Finally, the constructed graph has a small average shortest path and a high global cluster coefficient. This proves that the constructed graph follows the small world phenomenon. Keywords: Graph metrics, Math essentials, Gephi, Small world phenomenon, Directed graph
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.