时空信息融合的叫车始发地需求预测

IF 2.7 4区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY Transportation Safety and Environment Pub Date : 2023-05-18 DOI:10.1093/tse/tdad026
Ning Wang, Liang Zheng, Huitao Shen, Shukai Li
{"title":"时空信息融合的叫车始发地需求预测","authors":"Ning Wang, Liang Zheng, Huitao Shen, Shukai Li","doi":"10.1093/tse/tdad026","DOIUrl":null,"url":null,"abstract":"\n Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand, and improving the service level of ride-hailing platforms. In contrast to previous studies, which have primarily focused on the inflow or outflow demands of each zone, this study proposes a Conditional Generative Adversarial Network with a Wasserstein divergence objective (CWGAN-div) to predict ride-hailing origin-destination (OD) demand matrices. Residual blocks and refined loss functions help to enhance the stability of model training. Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results. Empirical analysis using ride-hailing data from Manhattan, New York City, demonstrates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance. Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods. Consequently, the proposed model displays potential for network-wide ride-hailing OD demand prediction.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ride-hailing origin-destination demand prediction with spatiotemporal information fusion\",\"authors\":\"Ning Wang, Liang Zheng, Huitao Shen, Shukai Li\",\"doi\":\"10.1093/tse/tdad026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand, and improving the service level of ride-hailing platforms. In contrast to previous studies, which have primarily focused on the inflow or outflow demands of each zone, this study proposes a Conditional Generative Adversarial Network with a Wasserstein divergence objective (CWGAN-div) to predict ride-hailing origin-destination (OD) demand matrices. Residual blocks and refined loss functions help to enhance the stability of model training. Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results. Empirical analysis using ride-hailing data from Manhattan, New York City, demonstrates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance. Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods. Consequently, the proposed model displays potential for network-wide ride-hailing OD demand prediction.\",\"PeriodicalId\":52804,\"journal\":{\"name\":\"Transportation Safety and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Safety and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/tse/tdad026\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdad026","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

准确的网约车需求预测有助于平衡交通供需,提高网约车平台的服务水平。以往的研究主要关注每个区域的流入或流出需求,与此相反,本研究提出了一个具有Wasserstein散度目标(CWGAN-div)的条件生成对抗网络来预测网约车出发地(OD)需求矩阵。残差块和精细损失函数有助于增强模型训练的稳定性。可解释的条件信息用于捕获外部时空依赖关系,并指导模型生成更精确的结果。基于纽约曼哈顿网约车数据的实证分析表明,我们提出的CWGAN-div模型可以有效地预测全网络OD矩阵,并具有较强的收敛性能。对比实验也表明CWGAN-div优于其他基准测试方法。因此,所提出的模型显示了全网网约车OD需求预测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ride-hailing origin-destination demand prediction with spatiotemporal information fusion
Accurate demand forecasting for online ride-hailing contributes to balancing traffic supply and demand, and improving the service level of ride-hailing platforms. In contrast to previous studies, which have primarily focused on the inflow or outflow demands of each zone, this study proposes a Conditional Generative Adversarial Network with a Wasserstein divergence objective (CWGAN-div) to predict ride-hailing origin-destination (OD) demand matrices. Residual blocks and refined loss functions help to enhance the stability of model training. Interpretable conditional information is employed to capture external spatiotemporal dependencies and guide the model towards generating more precise results. Empirical analysis using ride-hailing data from Manhattan, New York City, demonstrates that our proposed CWGAN-div model can effectively predict the network-wide OD matrix and exhibits strong convergence performance. Comparative experiments also show that the CWGAN-div outperforms other benchmarking methods. Consequently, the proposed model displays potential for network-wide ride-hailing OD demand prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Safety and Environment
Transportation Safety and Environment TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.90
自引率
13.60%
发文量
32
审稿时长
10 weeks
期刊最新文献
A maneuver indicator and ensemble learning-based risky driver recognition approach for highway merging areas Unraveling the veil of traffic safety: A comprehensive analysis of factors influencing crash frequency across U.S. States An investigation of ADAS testing scenarios based on vehicle-to-powered two-wheeler accidents occurring in a county-level district in Hunan province Research on intelligent fault diagnosis for railway point machines using deep reinforcement learning A variable time headway model for mixed car-following process considering multiple front vehicles information in foggy weather
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1