碳量子点对晚疫病和真菌植物病原体的抑制活性及其对dsRNA诱导的基因沉默的影响

IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology & Biotechnological Equipment Pub Date : 2022-11-21 DOI:10.1080/13102818.2022.2146533
K. Kostov, Boika Andonova-Lilova, G. Smagghe
{"title":"碳量子点对晚疫病和真菌植物病原体的抑制活性及其对dsRNA诱导的基因沉默的影响","authors":"K. Kostov, Boika Andonova-Lilova, G. Smagghe","doi":"10.1080/13102818.2022.2146533","DOIUrl":null,"url":null,"abstract":"Abstract Carbon quantum dots (CQDs) have many potential applications due to their cell-penetrating ability, biocompatibility and tunable properties. Among a variety of characteristics, the inhibition of bacteria by CQDs is often reported. However, the effect on other microorganisms, such as plant pathogenic fungi and oomycetes, is poorly studied. Here we monitored the growth of the oomycete plant pathogen Phytophthora infestans in the presence of CQDs, as well as of another three fungal plant pathogens, namely Botrytis cinerea, Alternaria alternata and Fusarium oxysporum. Moreover, the ability of CQDs to improve gene silencing caused by exogenous dsRNA in P. infestans was studied, and the toxicity of CQDs to human keratinocytes was evaluated. Our results indicate significant inhibitory activity of CQDs against P. infestans at relatively low concentrations. In a species-specific manner and to a lesser extent, the growth of the three fungal plant pathogens was also affected. We also found that the treatment of P. infestans with naked dsRNA in vitro did not trigger gene silencing. However, the mixture of CQDs with dsRNA increased RNAi efficiency, by causing a significant reduction of the transcript levels of the target gene in developing sporangia. Finally, no cytotoxicity of the CQDs, in the concentrations active against the plant pathogens, was found.","PeriodicalId":9076,"journal":{"name":"Biotechnology & Biotechnological Equipment","volume":"142 11-12","pages":"949 - 959"},"PeriodicalIF":1.5000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing\",\"authors\":\"K. Kostov, Boika Andonova-Lilova, G. Smagghe\",\"doi\":\"10.1080/13102818.2022.2146533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Carbon quantum dots (CQDs) have many potential applications due to their cell-penetrating ability, biocompatibility and tunable properties. Among a variety of characteristics, the inhibition of bacteria by CQDs is often reported. However, the effect on other microorganisms, such as plant pathogenic fungi and oomycetes, is poorly studied. Here we monitored the growth of the oomycete plant pathogen Phytophthora infestans in the presence of CQDs, as well as of another three fungal plant pathogens, namely Botrytis cinerea, Alternaria alternata and Fusarium oxysporum. Moreover, the ability of CQDs to improve gene silencing caused by exogenous dsRNA in P. infestans was studied, and the toxicity of CQDs to human keratinocytes was evaluated. Our results indicate significant inhibitory activity of CQDs against P. infestans at relatively low concentrations. In a species-specific manner and to a lesser extent, the growth of the three fungal plant pathogens was also affected. We also found that the treatment of P. infestans with naked dsRNA in vitro did not trigger gene silencing. However, the mixture of CQDs with dsRNA increased RNAi efficiency, by causing a significant reduction of the transcript levels of the target gene in developing sporangia. Finally, no cytotoxicity of the CQDs, in the concentrations active against the plant pathogens, was found.\",\"PeriodicalId\":9076,\"journal\":{\"name\":\"Biotechnology & Biotechnological Equipment\",\"volume\":\"142 11-12\",\"pages\":\"949 - 959\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology & Biotechnological Equipment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13102818.2022.2146533\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Biotechnological Equipment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13102818.2022.2146533","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

碳量子点(CQDs)由于其细胞穿透能力、生物相容性和可调性而具有许多潜在的应用前景。在多种特性中,CQDs对细菌的抑制作用经常被报道。然而,对其他微生物的影响,如植物病原真菌和卵菌的研究很少。在CQDs存在的情况下,我们监测了卵霉菌植物病原体疫霉(Phytophthora infestans)以及另外三种植物真菌病原体Botrytis cinerea、Alternaria alternata和Fusarium oxysporum的生长情况。此外,我们还研究了CQDs改善P. infestans由外源dsRNA引起的基因沉默的能力,并评估了CQDs对人角质形成细胞的毒性。结果表明,CQDs在较低浓度下对病原菌有明显的抑制作用。以一种特定的方式,在较小程度上,三种真菌植物病原体的生长也受到影响。我们还发现,在体外用裸dsRNA处理病原菌不会引发基因沉默。然而,CQDs与dsRNA的混合物通过显著降低孢子囊发育过程中靶基因的转录水平,提高了RNAi效率。最后,在对植物病原体有活性的浓度下,没有发现CQDs的细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing
Abstract Carbon quantum dots (CQDs) have many potential applications due to their cell-penetrating ability, biocompatibility and tunable properties. Among a variety of characteristics, the inhibition of bacteria by CQDs is often reported. However, the effect on other microorganisms, such as plant pathogenic fungi and oomycetes, is poorly studied. Here we monitored the growth of the oomycete plant pathogen Phytophthora infestans in the presence of CQDs, as well as of another three fungal plant pathogens, namely Botrytis cinerea, Alternaria alternata and Fusarium oxysporum. Moreover, the ability of CQDs to improve gene silencing caused by exogenous dsRNA in P. infestans was studied, and the toxicity of CQDs to human keratinocytes was evaluated. Our results indicate significant inhibitory activity of CQDs against P. infestans at relatively low concentrations. In a species-specific manner and to a lesser extent, the growth of the three fungal plant pathogens was also affected. We also found that the treatment of P. infestans with naked dsRNA in vitro did not trigger gene silencing. However, the mixture of CQDs with dsRNA increased RNAi efficiency, by causing a significant reduction of the transcript levels of the target gene in developing sporangia. Finally, no cytotoxicity of the CQDs, in the concentrations active against the plant pathogens, was found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology & Biotechnological Equipment
Biotechnology & Biotechnological Equipment 工程技术-生物工程与应用微生物
CiteScore
3.10
自引率
0.00%
发文量
90
审稿时长
1 months
期刊介绍: Biotechnology & Biotechnological Equipment (B&BE) is an international open access journal publishing cutting-edge research. A modern world requires modern biotechnology and nanobiology. The journal is a forum that provides society with valuable information for a healthy and better life and promotes “the Science and Culture of Nature”. The journal publishes original research and reviews with a multidisciplinary perspective; expanded case reports with a focus on molecular medical research and advanced practice in evidence-based medicine are also considered.
期刊最新文献
Polymorphism in SNP G1 of the GDF9 gene associated with reproductive traits in Bulgarian dairy sheep Costs of treating type 2 diabetes mellitus and its complications A new strategy of multiplex real-time RT-qPCR assay for differentiating Omicron variants from other SARS-CoV-2 lineages Fast and precise multi-site mutagenesis on linear DNA fragments Analysis of contrast sensitivity in patients implanted with Acunex Vario and LuxSmart extended depth of focus (E-DOF) intraocular lenses (IOLs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1