{"title":"埃塞俄比亚南部Bilate上游集水区利用WetSpas模型估算地下水补给","authors":"Bitsiet Dereje, D. Nedaw","doi":"10.4314/MEJS.V11I1.3","DOIUrl":null,"url":null,"abstract":"The study area, upper Bilate catchment, is strongly dependent on groundwater like other rural catchments in the country. The main objective of this work is to quantify the amount of groundwater recharge in upper Bilate catchment. Recharge was estimated using physically based distributed recharge model called WetSpass. As input to the model precipitation, potential evapotranspiration, temperature and wind speed were estimated using data collected from meteorological stations located within the catchment and nearby areas. The physical environmental data including land use, soil type, and groundwater depth were collected from field and existing maps. Slope and topography map were generated from Shuttle Radar Topographic Mission elevation data. Using the model the mean annual recharge of the catchment was found to be 9.4 % of the precipitation whereas the direct runoff was found to be 20 % of the precipitation. The study area is characterized by lower groundwater recharge relative to surface runoff due to the effect of impermeable soils, morphology of the land and land use/land cover of the study area. The western and northern parts of the area are identified as recharging zone and the central and southern part are discharge zone. The groundwater recharge zoning map was validated using base flow separation method and also compared with previous groundwater recharge works of the study area. This study revealed that the groundwater recharge estimation using WetSpass model is reasonable and useful for quantification of annual groundwater recharge with spatial and seasonal variation and also capable in the identification of groundwater recharge zones in the area under study. Keywords: Runoff; Evapotranspiration; Groundwater; WetSpass; Bilate catchment; Ethiopia.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4314/MEJS.V11I1.3","citationCount":"12","resultStr":"{\"title\":\"Groundwater Recharge Estimation Using WetSpass Modeling in Upper Bilate Catchment, Southern Ethiopia\",\"authors\":\"Bitsiet Dereje, D. Nedaw\",\"doi\":\"10.4314/MEJS.V11I1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study area, upper Bilate catchment, is strongly dependent on groundwater like other rural catchments in the country. The main objective of this work is to quantify the amount of groundwater recharge in upper Bilate catchment. Recharge was estimated using physically based distributed recharge model called WetSpass. As input to the model precipitation, potential evapotranspiration, temperature and wind speed were estimated using data collected from meteorological stations located within the catchment and nearby areas. The physical environmental data including land use, soil type, and groundwater depth were collected from field and existing maps. Slope and topography map were generated from Shuttle Radar Topographic Mission elevation data. Using the model the mean annual recharge of the catchment was found to be 9.4 % of the precipitation whereas the direct runoff was found to be 20 % of the precipitation. The study area is characterized by lower groundwater recharge relative to surface runoff due to the effect of impermeable soils, morphology of the land and land use/land cover of the study area. The western and northern parts of the area are identified as recharging zone and the central and southern part are discharge zone. The groundwater recharge zoning map was validated using base flow separation method and also compared with previous groundwater recharge works of the study area. This study revealed that the groundwater recharge estimation using WetSpass model is reasonable and useful for quantification of annual groundwater recharge with spatial and seasonal variation and also capable in the identification of groundwater recharge zones in the area under study. Keywords: Runoff; Evapotranspiration; Groundwater; WetSpass; Bilate catchment; Ethiopia.\",\"PeriodicalId\":18948,\"journal\":{\"name\":\"Momona Ethiopian Journal of Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4314/MEJS.V11I1.3\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Momona Ethiopian Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/MEJS.V11I1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/MEJS.V11I1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Groundwater Recharge Estimation Using WetSpass Modeling in Upper Bilate Catchment, Southern Ethiopia
The study area, upper Bilate catchment, is strongly dependent on groundwater like other rural catchments in the country. The main objective of this work is to quantify the amount of groundwater recharge in upper Bilate catchment. Recharge was estimated using physically based distributed recharge model called WetSpass. As input to the model precipitation, potential evapotranspiration, temperature and wind speed were estimated using data collected from meteorological stations located within the catchment and nearby areas. The physical environmental data including land use, soil type, and groundwater depth were collected from field and existing maps. Slope and topography map were generated from Shuttle Radar Topographic Mission elevation data. Using the model the mean annual recharge of the catchment was found to be 9.4 % of the precipitation whereas the direct runoff was found to be 20 % of the precipitation. The study area is characterized by lower groundwater recharge relative to surface runoff due to the effect of impermeable soils, morphology of the land and land use/land cover of the study area. The western and northern parts of the area are identified as recharging zone and the central and southern part are discharge zone. The groundwater recharge zoning map was validated using base flow separation method and also compared with previous groundwater recharge works of the study area. This study revealed that the groundwater recharge estimation using WetSpass model is reasonable and useful for quantification of annual groundwater recharge with spatial and seasonal variation and also capable in the identification of groundwater recharge zones in the area under study. Keywords: Runoff; Evapotranspiration; Groundwater; WetSpass; Bilate catchment; Ethiopia.