基于相型分布的多冲击源串联系统相互依赖竞争失效过程的可靠性模型

IF 2.3 2区 工程技术 Q3 ENGINEERING, INDUSTRIAL Quality Technology and Quantitative Management Pub Date : 2022-10-03 DOI:10.1080/16843703.2022.2124644
H-Y. Lyu, Hongcheng Qu, Shuai Wang, Li Ma, Zaiyou Yang
{"title":"基于相型分布的多冲击源串联系统相互依赖竞争失效过程的可靠性模型","authors":"H-Y. Lyu, Hongcheng Qu, Shuai Wang, Li Ma, Zaiyou Yang","doi":"10.1080/16843703.2022.2124644","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we introduce the concept of a series system with two components and three shock sources considering degradation to build a reliability model. Sources 1 and 2 affect components 1 and 2, respectively. Source 3 covers both components. Both components are subject to dependent competing failure processes (DCFPs). A general reliability model of the n-component series system with m-shock sources subject to DCFPs is derived. The phase-type distribution method is applied to calculate the reliability of the hard failure process. The time lag among shocks follows the continuous phase-type distribution (PH c ). The lifetime and system reliability properties are discussed based on the phase-type distribution. The dependence of shock sources is also considered according to the proposition of phase-type distribution (PH). Finally, an application example and sensitivity analysis of micro-electro-mechanical systems (MEMS) oscillators subject to various shock models are presented to illustrate the developed reliability models.","PeriodicalId":49133,"journal":{"name":"Quality Technology and Quantitative Management","volume":"20 1","pages":"419 - 449"},"PeriodicalIF":2.3000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability model of series systems with multiple shock sources subject to dependent competing failure processes using phase-type distribution\",\"authors\":\"H-Y. Lyu, Hongcheng Qu, Shuai Wang, Li Ma, Zaiyou Yang\",\"doi\":\"10.1080/16843703.2022.2124644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we introduce the concept of a series system with two components and three shock sources considering degradation to build a reliability model. Sources 1 and 2 affect components 1 and 2, respectively. Source 3 covers both components. Both components are subject to dependent competing failure processes (DCFPs). A general reliability model of the n-component series system with m-shock sources subject to DCFPs is derived. The phase-type distribution method is applied to calculate the reliability of the hard failure process. The time lag among shocks follows the continuous phase-type distribution (PH c ). The lifetime and system reliability properties are discussed based on the phase-type distribution. The dependence of shock sources is also considered according to the proposition of phase-type distribution (PH). Finally, an application example and sensitivity analysis of micro-electro-mechanical systems (MEMS) oscillators subject to various shock models are presented to illustrate the developed reliability models.\",\"PeriodicalId\":49133,\"journal\":{\"name\":\"Quality Technology and Quantitative Management\",\"volume\":\"20 1\",\"pages\":\"419 - 449\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Technology and Quantitative Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/16843703.2022.2124644\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Technology and Quantitative Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/16843703.2022.2124644","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

本文引入考虑退化的双部件三冲击源串联系统的概念,建立可靠性模型。源1和源2分别影响组件1和2。源代码3涵盖了这两个组件。这两个组件都受制于相互依赖的竞争失效过程(DCFPs)。导出了受DCFPs影响的n分量m冲击源串联系统的一般可靠性模型。采用相型分布法计算硬失效过程的可靠性。冲击之间的时间滞后遵循连续相型分布(PH c)。基于相型分布,讨论了系统的寿命和可靠性特性。根据相型分布(PH)的命题,考虑了激波源的依赖性。最后,给出了微机电系统(MEMS)振荡器在不同冲击模型下的应用实例和灵敏度分析,以说明所建立的可靠性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability model of series systems with multiple shock sources subject to dependent competing failure processes using phase-type distribution
ABSTRACT In this paper, we introduce the concept of a series system with two components and three shock sources considering degradation to build a reliability model. Sources 1 and 2 affect components 1 and 2, respectively. Source 3 covers both components. Both components are subject to dependent competing failure processes (DCFPs). A general reliability model of the n-component series system with m-shock sources subject to DCFPs is derived. The phase-type distribution method is applied to calculate the reliability of the hard failure process. The time lag among shocks follows the continuous phase-type distribution (PH c ). The lifetime and system reliability properties are discussed based on the phase-type distribution. The dependence of shock sources is also considered according to the proposition of phase-type distribution (PH). Finally, an application example and sensitivity analysis of micro-electro-mechanical systems (MEMS) oscillators subject to various shock models are presented to illustrate the developed reliability models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quality Technology and Quantitative Management
Quality Technology and Quantitative Management ENGINEERING, INDUSTRIAL-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.10
自引率
21.40%
发文量
47
审稿时长
>12 weeks
期刊介绍: Quality Technology and Quantitative Management is an international refereed journal publishing original work in quality, reliability, queuing service systems, applied statistics (including methodology, data analysis, simulation), and their applications in business and industrial management. The journal publishes both theoretical and applied research articles using statistical methods or presenting new results, which solve or have the potential to solve real-world management problems.
期刊最新文献
Comprehensive review of high-dimensional monitoring methods: trends, insights, and interconnections Call center data modeling: a queueing science approach based on Markovian arrival process A new phase-type distribution-based method for time-dependent system reliability analysis Monitoring of high-dimensional and high-frequency data streams: A nonparametric approach Equilibrium balking behavior of customers and regulation measures in a multi-server queue with threshold policy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1