Zhaohong Sun, Wei Dong, Jinlong Shi, K. He, Zhengxing Huang
{"title":"基于注意力的生存预测深度递归模型","authors":"Zhaohong Sun, Wei Dong, Jinlong Shi, K. He, Zhengxing Huang","doi":"10.1145/3466782","DOIUrl":null,"url":null,"abstract":"Survival analysis exhibits profound effects on health service management. Traditional approaches for survival analysis have a pre-assumption on the time-to-event probability distribution and seldom consider sequential visits of patients on medical facilities. Although recent studies leverage the merits of deep learning techniques to capture non-linear features and long-term dependencies within multiple visits for survival analysis, the lack of interpretability prevents deep learning models from being applied to clinical practice. To address this challenge, this article proposes a novel attention-based deep recurrent model, named AttenSurv, for clinical survival analysis. Specifically, a global attention mechanism is proposed to extract essential/critical risk factors for interpretability improvement. Thereafter, Bi-directional Long Short-Term Memory is employed to capture the long-term dependency on data from a series of visits of patients. To further improve both the prediction performance and the interpretability of the proposed model, we propose another model, named GNNAttenSurv, by incorporating a graph neural network into AttenSurv, to extract the latent correlations between risk factors. We validated our solution on three public follow-up datasets and two electronic health record datasets. The results demonstrated that our proposed models yielded consistent improvement compared to the state-of-the-art baselines on survival analysis.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"2 1","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Attention-Based Deep Recurrent Model for Survival Prediction\",\"authors\":\"Zhaohong Sun, Wei Dong, Jinlong Shi, K. He, Zhengxing Huang\",\"doi\":\"10.1145/3466782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Survival analysis exhibits profound effects on health service management. Traditional approaches for survival analysis have a pre-assumption on the time-to-event probability distribution and seldom consider sequential visits of patients on medical facilities. Although recent studies leverage the merits of deep learning techniques to capture non-linear features and long-term dependencies within multiple visits for survival analysis, the lack of interpretability prevents deep learning models from being applied to clinical practice. To address this challenge, this article proposes a novel attention-based deep recurrent model, named AttenSurv, for clinical survival analysis. Specifically, a global attention mechanism is proposed to extract essential/critical risk factors for interpretability improvement. Thereafter, Bi-directional Long Short-Term Memory is employed to capture the long-term dependency on data from a series of visits of patients. To further improve both the prediction performance and the interpretability of the proposed model, we propose another model, named GNNAttenSurv, by incorporating a graph neural network into AttenSurv, to extract the latent correlations between risk factors. We validated our solution on three public follow-up datasets and two electronic health record datasets. The results demonstrated that our proposed models yielded consistent improvement compared to the state-of-the-art baselines on survival analysis.\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"2 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3466782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3466782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attention-Based Deep Recurrent Model for Survival Prediction
Survival analysis exhibits profound effects on health service management. Traditional approaches for survival analysis have a pre-assumption on the time-to-event probability distribution and seldom consider sequential visits of patients on medical facilities. Although recent studies leverage the merits of deep learning techniques to capture non-linear features and long-term dependencies within multiple visits for survival analysis, the lack of interpretability prevents deep learning models from being applied to clinical practice. To address this challenge, this article proposes a novel attention-based deep recurrent model, named AttenSurv, for clinical survival analysis. Specifically, a global attention mechanism is proposed to extract essential/critical risk factors for interpretability improvement. Thereafter, Bi-directional Long Short-Term Memory is employed to capture the long-term dependency on data from a series of visits of patients. To further improve both the prediction performance and the interpretability of the proposed model, we propose another model, named GNNAttenSurv, by incorporating a graph neural network into AttenSurv, to extract the latent correlations between risk factors. We validated our solution on three public follow-up datasets and two electronic health record datasets. The results demonstrated that our proposed models yielded consistent improvement compared to the state-of-the-art baselines on survival analysis.