{"title":"一种基于软区间的决策方法及其计算机应用","authors":"Gözde Yaylalı, N. Polat, B. Tanay","doi":"10.2478/fcds-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract In today’s society, decision making is becoming more important and complicated with increasing and complex data. Decision making by using soft set theory, herein, we firstly report the comparison of soft intervals (SI) as the generalization of interval soft sets (ISS). The results showed that SIs are more effective and more general than the ISSs, for solving decision making problems due to allowing the ranking of parameters. Tabular form of SIs were used to construct a mathematical algorithm to make a decision for problems that involves uncertainties. Since these kinds of problems have huge data, constructing new and effective methods solving these problems and transforming them into the machine learning methods is very important. An important advance of our presented method is being a more general method than the Decision-Making methods based on special situations of soft set theory. The presented method in this study can be used for all of them, while the others can only work in special cases. The structures obtained from the results of soft intervals were subjected to test with examples. The designed algorithm was written in recently used functional programing language C# and applied to the problems that have been published in earlier studies. This is a pioneering study, where this type of mathematical algorithm was converted into a code and applied successfully.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"7 9","pages":"273 - 296"},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Soft Interval Based Decision Making Method and Its Computer Application\",\"authors\":\"Gözde Yaylalı, N. Polat, B. Tanay\",\"doi\":\"10.2478/fcds-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In today’s society, decision making is becoming more important and complicated with increasing and complex data. Decision making by using soft set theory, herein, we firstly report the comparison of soft intervals (SI) as the generalization of interval soft sets (ISS). The results showed that SIs are more effective and more general than the ISSs, for solving decision making problems due to allowing the ranking of parameters. Tabular form of SIs were used to construct a mathematical algorithm to make a decision for problems that involves uncertainties. Since these kinds of problems have huge data, constructing new and effective methods solving these problems and transforming them into the machine learning methods is very important. An important advance of our presented method is being a more general method than the Decision-Making methods based on special situations of soft set theory. The presented method in this study can be used for all of them, while the others can only work in special cases. The structures obtained from the results of soft intervals were subjected to test with examples. The designed algorithm was written in recently used functional programing language C# and applied to the problems that have been published in earlier studies. This is a pioneering study, where this type of mathematical algorithm was converted into a code and applied successfully.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"7 9\",\"pages\":\"273 - 296\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2021-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Soft Interval Based Decision Making Method and Its Computer Application
Abstract In today’s society, decision making is becoming more important and complicated with increasing and complex data. Decision making by using soft set theory, herein, we firstly report the comparison of soft intervals (SI) as the generalization of interval soft sets (ISS). The results showed that SIs are more effective and more general than the ISSs, for solving decision making problems due to allowing the ranking of parameters. Tabular form of SIs were used to construct a mathematical algorithm to make a decision for problems that involves uncertainties. Since these kinds of problems have huge data, constructing new and effective methods solving these problems and transforming them into the machine learning methods is very important. An important advance of our presented method is being a more general method than the Decision-Making methods based on special situations of soft set theory. The presented method in this study can be used for all of them, while the others can only work in special cases. The structures obtained from the results of soft intervals were subjected to test with examples. The designed algorithm was written in recently used functional programing language C# and applied to the problems that have been published in earlier studies. This is a pioneering study, where this type of mathematical algorithm was converted into a code and applied successfully.