SiC陶瓷在二维预应力下的划痕

Zhang Gaofeng, Yijiang Zeng, Wenbo Zhang
{"title":"SiC陶瓷在二维预应力下的划痕","authors":"Zhang Gaofeng, Yijiang Zeng, Wenbo Zhang","doi":"10.1504/IJNM.2017.10005597","DOIUrl":null,"url":null,"abstract":"A stress field model was built to study the effects of pre-stressing value, normal and tangential load on the three principal stresses and maximum shear stress when the silicon carbide (SiC) ceramics were scratched under two dimensional pre-stressing, and the scratching tests of SiC ceramic were conducted by using a Rockwell diamond indenter at different pre-stress values and normal loads. Scratching induced damage was assessed and characterised via destructive inspection techniques and progressive lapping techniques combined with the digital microscope. Acoustic emission (AE) technology was also used for the online monitoring of the damage. The results showed that, for a given scratching load, the amplitude of AE signals was reduced as the pre-stress values increasing, and surface/subsurface damage of SiC ceramics induced by two dimensional pre-stress scratching was less than that by conventional scratching. So one can believe that the two dimensional pre-stress method can contribute to decreasing the machining damage of brittle materials.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"13 1","pages":"270"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scratching of SiC ceramics at two dimensional pre-stressing\",\"authors\":\"Zhang Gaofeng, Yijiang Zeng, Wenbo Zhang\",\"doi\":\"10.1504/IJNM.2017.10005597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stress field model was built to study the effects of pre-stressing value, normal and tangential load on the three principal stresses and maximum shear stress when the silicon carbide (SiC) ceramics were scratched under two dimensional pre-stressing, and the scratching tests of SiC ceramic were conducted by using a Rockwell diamond indenter at different pre-stress values and normal loads. Scratching induced damage was assessed and characterised via destructive inspection techniques and progressive lapping techniques combined with the digital microscope. Acoustic emission (AE) technology was also used for the online monitoring of the damage. The results showed that, for a given scratching load, the amplitude of AE signals was reduced as the pre-stress values increasing, and surface/subsurface damage of SiC ceramics induced by two dimensional pre-stress scratching was less than that by conventional scratching. So one can believe that the two dimensional pre-stress method can contribute to decreasing the machining damage of brittle materials.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\"13 1\",\"pages\":\"270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2017.10005597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2017.10005597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

建立了碳化硅(SiC)陶瓷在二维预应力作用下的应力场模型,研究了预应力值、法向载荷和切向载荷对三种主应力和最大剪应力的影响。通过破坏性检查技术和结合数字显微镜的渐进研磨技术来评估和表征划痕引起的损伤。声发射(AE)技术也被用于损伤的在线监测。结果表明,在给定的划痕载荷下,随着预应力值的增加,声发射信号的幅度减小,二维预应力划痕对SiC陶瓷表面/亚表面的损伤小于常规划痕。因此,可以相信二维预应力方法有助于减少脆性材料的加工损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scratching of SiC ceramics at two dimensional pre-stressing
A stress field model was built to study the effects of pre-stressing value, normal and tangential load on the three principal stresses and maximum shear stress when the silicon carbide (SiC) ceramics were scratched under two dimensional pre-stressing, and the scratching tests of SiC ceramic were conducted by using a Rockwell diamond indenter at different pre-stress values and normal loads. Scratching induced damage was assessed and characterised via destructive inspection techniques and progressive lapping techniques combined with the digital microscope. Acoustic emission (AE) technology was also used for the online monitoring of the damage. The results showed that, for a given scratching load, the amplitude of AE signals was reduced as the pre-stress values increasing, and surface/subsurface damage of SiC ceramics induced by two dimensional pre-stress scratching was less than that by conventional scratching. So one can believe that the two dimensional pre-stress method can contribute to decreasing the machining damage of brittle materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Study on the effect of self-heating effect of bulk acoustic wave filter on the interpolation loss in the band Design and simulation of LDO circuit Research on non-contact ultrasonic vibration assisted rotating electrical discharge machining (EDM) machine tool Influence of rake angle and nose radius on optical silicon nanomachining feed rate and surface quality: a modelling, prediction and optimisation study Construction C/g-C3N4 with synergistic performance toward high photocatalytic performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1