一种用于乳腺体模测量系统的新型增益增强Vivaldi天线

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electromagnetics Pub Date : 2023-01-02 DOI:10.1080/02726343.2023.2177394
Hüseyin Özmen, M. B. Kurt
{"title":"一种用于乳腺体模测量系统的新型增益增强Vivaldi天线","authors":"Hüseyin Özmen, M. B. Kurt","doi":"10.1080/02726343.2023.2177394","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, a breast phantom measurement system based on radar-based microwave imaging technique is proposed. For this purpose, a small-size Vivaldi antenna with high gain and ultra-wide band is designed. The antenna bandwidth is in the range of 3–10.6 GHz, and the maximum realized gain is 8.5 dB. The size of the antenna is 36 × 36 mm2, and FR4 was used as dielectric material. Bandwidth and gain are increased by using edge slots. After the antenna hardware had been manufactured with PCB printed circuit technology, a mechanism was developed to measure breast phantom. After the measurement process is completed, a computer program converts the collected signals into images. For the testing of the system, canola oil was used as a phantom and the object in the oil was successfully imaged.","PeriodicalId":50542,"journal":{"name":"Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel gain enhanced Vivaldi antenna for a breast phantom measurement system\",\"authors\":\"Hüseyin Özmen, M. B. Kurt\",\"doi\":\"10.1080/02726343.2023.2177394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, a breast phantom measurement system based on radar-based microwave imaging technique is proposed. For this purpose, a small-size Vivaldi antenna with high gain and ultra-wide band is designed. The antenna bandwidth is in the range of 3–10.6 GHz, and the maximum realized gain is 8.5 dB. The size of the antenna is 36 × 36 mm2, and FR4 was used as dielectric material. Bandwidth and gain are increased by using edge slots. After the antenna hardware had been manufactured with PCB printed circuit technology, a mechanism was developed to measure breast phantom. After the measurement process is completed, a computer program converts the collected signals into images. For the testing of the system, canola oil was used as a phantom and the object in the oil was successfully imaged.\",\"PeriodicalId\":50542,\"journal\":{\"name\":\"Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/02726343.2023.2177394\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02726343.2023.2177394","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于雷达微波成像技术的乳房幻像测量系统。为此,设计了一种小尺寸、高增益、超宽带的维瓦尔第天线。天线带宽在3-10.6 GHz范围内,最大实现增益为8.5 dB。天线尺寸为36 × 36 mm2,采用FR4作为介质材料。利用边缘槽增加了带宽和增益。在采用PCB印刷电路技术完成天线硬件制造后,研制了一种乳房虚影测量机构。测量过程完成后,计算机程序将采集到的信号转换成图像。在系统的测试中,以菜籽油为原型,成功地对其中的物体进行了成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel gain enhanced Vivaldi antenna for a breast phantom measurement system
ABSTRACT In this study, a breast phantom measurement system based on radar-based microwave imaging technique is proposed. For this purpose, a small-size Vivaldi antenna with high gain and ultra-wide band is designed. The antenna bandwidth is in the range of 3–10.6 GHz, and the maximum realized gain is 8.5 dB. The size of the antenna is 36 × 36 mm2, and FR4 was used as dielectric material. Bandwidth and gain are increased by using edge slots. After the antenna hardware had been manufactured with PCB printed circuit technology, a mechanism was developed to measure breast phantom. After the measurement process is completed, a computer program converts the collected signals into images. For the testing of the system, canola oil was used as a phantom and the object in the oil was successfully imaged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electromagnetics
Electromagnetics 工程技术-工程:电子与电气
CiteScore
1.60
自引率
12.50%
发文量
31
审稿时长
6 months
期刊介绍: Publishing eight times per year, Electromagnetics offers refereed papers that span the entire broad field of electromagnetics and serves as an exceptional reference source of permanent archival value. Included in this wide ranging scope of materials are developments in electromagnetic theory, high frequency techniques, antennas and randomes, arrays, numerical techniques, scattering and diffraction, materials, and printed circuits. The journal also serves as a forum for deliberations on innovations in the field. Additionally, special issues give more in-depth coverage to topics of immediate importance. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. Submissions can be made via email or postal mail.
期刊最新文献
A broad-beam reflective metasurface enhancing signal coverage for indoor wireless communication Modelling of defected structures and stub based compact ultra-wideband bandpass filter (UWB-BPF) with a single notched band A tri-band shared-aperture antenna with a scanning beam for the sub-6 GHz and millimeter-wave applications A high-selectivity filtering DDPA with raised DDPs and metal vias Powerful numerical method for analysis of electromagnetic scattering from multiple 3D coated targets buried under rough surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1