{"title":"合金的合金化和改性问题:利用废料创造新材料","authors":"G. Akhmetova, G. Ulyeva, K. Tuyskhan","doi":"10.15407/ufm.22.02.271","DOIUrl":null,"url":null,"abstract":"At the large and powerful industrial (private or state) enterprises of the world, particularly, Kazakhstan, RF, and some other post-Soviet (and not only) countries, the products are manufactured using obsolete technologies with high wastes’ generation. At that, the storage and warehousing are unorganized and technically unreasonable (wastes of different chemical compositions and hazard class are mixed) that does not allow their further efficient recycling. Increased processing of many industrial and household wastes is not only economical, but also considerably improves the environmental situation, significantly reduces the consumption of natural raw materials, and reduces the use of scarce lands for waste storage [1]. The authors of this article carried out a literary review on this topic and attempted to use microsilica, as a waste of silicon production, to create new materials with special properties. This refers to the field of experimental study of structures, phases, structural components for understanding the processes of alloying, modification, diffusion, etc. Understanding physical thinking from the metal physics point of view in the study of the nature and kinetics of the phase transformations, alloying, and modification processes enables using the physical research methods to solve research and technological problems in metallurgy and materials science in order to predict and change the required set of properties. The method of research in this article is electron microscopy as the simplest and fastest method of obtaining information about the microstructure, elemental composition, and distribution of components in the bulk.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the Issue of Alloying and Modification of Alloys: Using the Waste Products for Creation of Novel Materials\",\"authors\":\"G. Akhmetova, G. Ulyeva, K. Tuyskhan\",\"doi\":\"10.15407/ufm.22.02.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the large and powerful industrial (private or state) enterprises of the world, particularly, Kazakhstan, RF, and some other post-Soviet (and not only) countries, the products are manufactured using obsolete technologies with high wastes’ generation. At that, the storage and warehousing are unorganized and technically unreasonable (wastes of different chemical compositions and hazard class are mixed) that does not allow their further efficient recycling. Increased processing of many industrial and household wastes is not only economical, but also considerably improves the environmental situation, significantly reduces the consumption of natural raw materials, and reduces the use of scarce lands for waste storage [1]. The authors of this article carried out a literary review on this topic and attempted to use microsilica, as a waste of silicon production, to create new materials with special properties. This refers to the field of experimental study of structures, phases, structural components for understanding the processes of alloying, modification, diffusion, etc. Understanding physical thinking from the metal physics point of view in the study of the nature and kinetics of the phase transformations, alloying, and modification processes enables using the physical research methods to solve research and technological problems in metallurgy and materials science in order to predict and change the required set of properties. The method of research in this article is electron microscopy as the simplest and fastest method of obtaining information about the microstructure, elemental composition, and distribution of components in the bulk.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.22.02.271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.22.02.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
On the Issue of Alloying and Modification of Alloys: Using the Waste Products for Creation of Novel Materials
At the large and powerful industrial (private or state) enterprises of the world, particularly, Kazakhstan, RF, and some other post-Soviet (and not only) countries, the products are manufactured using obsolete technologies with high wastes’ generation. At that, the storage and warehousing are unorganized and technically unreasonable (wastes of different chemical compositions and hazard class are mixed) that does not allow their further efficient recycling. Increased processing of many industrial and household wastes is not only economical, but also considerably improves the environmental situation, significantly reduces the consumption of natural raw materials, and reduces the use of scarce lands for waste storage [1]. The authors of this article carried out a literary review on this topic and attempted to use microsilica, as a waste of silicon production, to create new materials with special properties. This refers to the field of experimental study of structures, phases, structural components for understanding the processes of alloying, modification, diffusion, etc. Understanding physical thinking from the metal physics point of view in the study of the nature and kinetics of the phase transformations, alloying, and modification processes enables using the physical research methods to solve research and technological problems in metallurgy and materials science in order to predict and change the required set of properties. The method of research in this article is electron microscopy as the simplest and fastest method of obtaining information about the microstructure, elemental composition, and distribution of components in the bulk.
期刊介绍:
The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.