{"title":"大型复杂海上结构焊接残余应力预测的高效计算","authors":"Hongquan Zhao, Jiawei Yang, J. Zou, Chuan Liu","doi":"10.5957/JSPD.04180012","DOIUrl":null,"url":null,"abstract":"A mock-up of an offshore structure was prepared by multi-pass welding of several components with different thicknesses, different materials, different grooves, and ultra-long welding lengths. It may be very time consuming to obtain the stress distribution of the mock-up with conventional thermal elastic-plastic (TEP) computational methods. An efficient computation method, i.e. the model separation and stress assembly method, was proposed in the present study to obtain the stress distribution of the mock-up within an acceptable time. The full finite element (FE) model with solid elements was first created and separated into two independent parts, and the stress distribution in each part was obtained by using the TEP FE method. Finally, the full stress distribution in the mock-up was obtained by assembling the stress distributions from each part. The computed results show that the predicted stresses of the mock-up agree with the measured data obtained by using the hole-drilling method and x-ray diffraction method. Therefore, the proposed efficient method for stress simulation in large and complex structures can guarantee the simulation accuracy within an acceptable computation time on a common computer workstation.\n \n \n Because of the intense concentration of heating during fusion welding, the welding seam and its vicinity undergo rapid heating and cooling, generating residual stress in the joint. Welding residual stress can be detrimental to the structure's performance because of fatigue, creep, and plastic collapse (Withers 2007). In addition, it can induce stress corrosion cracking (Dong et al. 1997). Therefore, investigation of welding residual stress distribution is very important to facilitate the structure design and life evaluation of welded structures.\n The experimental measurement of residual stress has practical limitations. For large and complex structures such as offshore components, it is impossible to obtain the full residual stress distribution from experiments. The finite element (FE) numerical simulation of the welding process can measure the full stress distribution during the welding process with the advantages of being economical, nondestructive, and repeatabile. Therefore, it has been widely applied in many industrial fields to investigate the mechanisms of welding processes, stress and distortion characteristics, and the service life of welded structures (Lindgren 2006).\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Computation on Prediction of Welding Residual Stress of a Large and Complex Offshore Structure\",\"authors\":\"Hongquan Zhao, Jiawei Yang, J. Zou, Chuan Liu\",\"doi\":\"10.5957/JSPD.04180012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mock-up of an offshore structure was prepared by multi-pass welding of several components with different thicknesses, different materials, different grooves, and ultra-long welding lengths. It may be very time consuming to obtain the stress distribution of the mock-up with conventional thermal elastic-plastic (TEP) computational methods. An efficient computation method, i.e. the model separation and stress assembly method, was proposed in the present study to obtain the stress distribution of the mock-up within an acceptable time. The full finite element (FE) model with solid elements was first created and separated into two independent parts, and the stress distribution in each part was obtained by using the TEP FE method. Finally, the full stress distribution in the mock-up was obtained by assembling the stress distributions from each part. The computed results show that the predicted stresses of the mock-up agree with the measured data obtained by using the hole-drilling method and x-ray diffraction method. Therefore, the proposed efficient method for stress simulation in large and complex structures can guarantee the simulation accuracy within an acceptable computation time on a common computer workstation.\\n \\n \\n Because of the intense concentration of heating during fusion welding, the welding seam and its vicinity undergo rapid heating and cooling, generating residual stress in the joint. Welding residual stress can be detrimental to the structure's performance because of fatigue, creep, and plastic collapse (Withers 2007). In addition, it can induce stress corrosion cracking (Dong et al. 1997). Therefore, investigation of welding residual stress distribution is very important to facilitate the structure design and life evaluation of welded structures.\\n The experimental measurement of residual stress has practical limitations. For large and complex structures such as offshore components, it is impossible to obtain the full residual stress distribution from experiments. The finite element (FE) numerical simulation of the welding process can measure the full stress distribution during the welding process with the advantages of being economical, nondestructive, and repeatabile. Therefore, it has been widely applied in many industrial fields to investigate the mechanisms of welding processes, stress and distortion characteristics, and the service life of welded structures (Lindgren 2006).\\n\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JSPD.04180012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JSPD.04180012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Efficient Computation on Prediction of Welding Residual Stress of a Large and Complex Offshore Structure
A mock-up of an offshore structure was prepared by multi-pass welding of several components with different thicknesses, different materials, different grooves, and ultra-long welding lengths. It may be very time consuming to obtain the stress distribution of the mock-up with conventional thermal elastic-plastic (TEP) computational methods. An efficient computation method, i.e. the model separation and stress assembly method, was proposed in the present study to obtain the stress distribution of the mock-up within an acceptable time. The full finite element (FE) model with solid elements was first created and separated into two independent parts, and the stress distribution in each part was obtained by using the TEP FE method. Finally, the full stress distribution in the mock-up was obtained by assembling the stress distributions from each part. The computed results show that the predicted stresses of the mock-up agree with the measured data obtained by using the hole-drilling method and x-ray diffraction method. Therefore, the proposed efficient method for stress simulation in large and complex structures can guarantee the simulation accuracy within an acceptable computation time on a common computer workstation.
Because of the intense concentration of heating during fusion welding, the welding seam and its vicinity undergo rapid heating and cooling, generating residual stress in the joint. Welding residual stress can be detrimental to the structure's performance because of fatigue, creep, and plastic collapse (Withers 2007). In addition, it can induce stress corrosion cracking (Dong et al. 1997). Therefore, investigation of welding residual stress distribution is very important to facilitate the structure design and life evaluation of welded structures.
The experimental measurement of residual stress has practical limitations. For large and complex structures such as offshore components, it is impossible to obtain the full residual stress distribution from experiments. The finite element (FE) numerical simulation of the welding process can measure the full stress distribution during the welding process with the advantages of being economical, nondestructive, and repeatabile. Therefore, it has been widely applied in many industrial fields to investigate the mechanisms of welding processes, stress and distortion characteristics, and the service life of welded structures (Lindgren 2006).
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.