{"title":"多用途铰接式空中机器人龙:空中操纵和抓取矢量推力控制","authors":"Moju Zhao, K. Okada, M. Inaba","doi":"10.1177/02783649221112446","DOIUrl":null,"url":null,"abstract":"Various state-of-the-art works have achieved aerial manipulation and grasping by attaching additional manipulator to aerial robots. However, such a coupled platform has limitations with respect to the interaction force and mobility. In this paper, we present the successful implementation of aerial manipulation and grasping by a novel articulated aerial robot called DRAGON, in which a vectorable rotor unit is embedded in each link. The key to performing stable manipulation and grasping in the air is the usage of rotor vectoring apparatus having two degrees-of-freedom. First, a comprehensive flight control methodology for aerial transformation using the vectorable thrust force is developed with the consideration of the dynamics of vectoring actuators. This proposed control method can suppress the oscillation due to the dynamics of vectoring actuators and also allow the integration with external and internal wrenches for object manipulation and grasping. Second, an online thrust-level planning method for bimanual object grasping using the two ends of this articulated model is presented. The proposed grasping style is unique in that the vectorable thrust force is used as the internal wrench instead of the joint torque. Finally, we show the experimental results of evaluation on the proposed control and planning methods for object manipulation and grasping.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"42 1","pages":"214 - 248"},"PeriodicalIF":7.5000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Versatile articulated aerial robot DRAGON: Aerial manipulation and grasping by vectorable thrust control\",\"authors\":\"Moju Zhao, K. Okada, M. Inaba\",\"doi\":\"10.1177/02783649221112446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various state-of-the-art works have achieved aerial manipulation and grasping by attaching additional manipulator to aerial robots. However, such a coupled platform has limitations with respect to the interaction force and mobility. In this paper, we present the successful implementation of aerial manipulation and grasping by a novel articulated aerial robot called DRAGON, in which a vectorable rotor unit is embedded in each link. The key to performing stable manipulation and grasping in the air is the usage of rotor vectoring apparatus having two degrees-of-freedom. First, a comprehensive flight control methodology for aerial transformation using the vectorable thrust force is developed with the consideration of the dynamics of vectoring actuators. This proposed control method can suppress the oscillation due to the dynamics of vectoring actuators and also allow the integration with external and internal wrenches for object manipulation and grasping. Second, an online thrust-level planning method for bimanual object grasping using the two ends of this articulated model is presented. The proposed grasping style is unique in that the vectorable thrust force is used as the internal wrench instead of the joint torque. Finally, we show the experimental results of evaluation on the proposed control and planning methods for object manipulation and grasping.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"42 1\",\"pages\":\"214 - 248\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649221112446\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649221112446","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Versatile articulated aerial robot DRAGON: Aerial manipulation and grasping by vectorable thrust control
Various state-of-the-art works have achieved aerial manipulation and grasping by attaching additional manipulator to aerial robots. However, such a coupled platform has limitations with respect to the interaction force and mobility. In this paper, we present the successful implementation of aerial manipulation and grasping by a novel articulated aerial robot called DRAGON, in which a vectorable rotor unit is embedded in each link. The key to performing stable manipulation and grasping in the air is the usage of rotor vectoring apparatus having two degrees-of-freedom. First, a comprehensive flight control methodology for aerial transformation using the vectorable thrust force is developed with the consideration of the dynamics of vectoring actuators. This proposed control method can suppress the oscillation due to the dynamics of vectoring actuators and also allow the integration with external and internal wrenches for object manipulation and grasping. Second, an online thrust-level planning method for bimanual object grasping using the two ends of this articulated model is presented. The proposed grasping style is unique in that the vectorable thrust force is used as the internal wrench instead of the joint torque. Finally, we show the experimental results of evaluation on the proposed control and planning methods for object manipulation and grasping.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.