基于异常信号特征的心电图异常分类

S. I. Purnama, M. Afandi
{"title":"基于异常信号特征的心电图异常分类","authors":"S. I. Purnama, M. Afandi","doi":"10.25077/jnte.v10n3.829.2021","DOIUrl":null,"url":null,"abstract":"Heart rate abnormalities can lead to many cardiovascular diseases such as heart arrythmia, heart failure, heart valve disease and many more. Some cardiovascular disease can cause death. Abnormalities signal feature can be seen using electrocardiogram. Electrocardiogram is an electric signal record from heart activity. Normal heart and abnormal heart have a different electrocardiogram signal pattern. This research is aim to detect abnormality from heart rate using electrocardiogram abnormality signal feature. Abnormality signal pattern can be used to classify normal and abnormal heart rate. Abnormality feature consists of P signal condition, R signal condition, P R interval rate, and double R interval. Electrocardiogram data that used in this study is obtain from MIT-BIH Arrythmia database. 20 electrocardiogram data have been used to see detection and classification performance while classifying normal and abnormal heart rate. Research result shows that feature based has 90.00% in accuracy, 90.00%in precision, and 90.00% in sensitivity while classify normal and abnormal heart rate. Research result can conclude that abnormality feature can be used to classify normal and abnormal heart rate. This method can be used for embedded system device that has limitation in memory and size.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrocardiogram Abnormal Classification Based on Abnormality Signal Feature\",\"authors\":\"S. I. Purnama, M. Afandi\",\"doi\":\"10.25077/jnte.v10n3.829.2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart rate abnormalities can lead to many cardiovascular diseases such as heart arrythmia, heart failure, heart valve disease and many more. Some cardiovascular disease can cause death. Abnormalities signal feature can be seen using electrocardiogram. Electrocardiogram is an electric signal record from heart activity. Normal heart and abnormal heart have a different electrocardiogram signal pattern. This research is aim to detect abnormality from heart rate using electrocardiogram abnormality signal feature. Abnormality signal pattern can be used to classify normal and abnormal heart rate. Abnormality feature consists of P signal condition, R signal condition, P R interval rate, and double R interval. Electrocardiogram data that used in this study is obtain from MIT-BIH Arrythmia database. 20 electrocardiogram data have been used to see detection and classification performance while classifying normal and abnormal heart rate. Research result shows that feature based has 90.00% in accuracy, 90.00%in precision, and 90.00% in sensitivity while classify normal and abnormal heart rate. Research result can conclude that abnormality feature can be used to classify normal and abnormal heart rate. This method can be used for embedded system device that has limitation in memory and size.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v10n3.829.2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v10n3.829.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心率异常会导致许多心血管疾病,如心律失常、心力衰竭、心脏瓣膜病等。一些心血管疾病会导致死亡。使用心电图可以看到异常信号的特征。心电图是心脏活动的电信号记录。正常心脏和异常心脏具有不同的心电图信号模式。本研究旨在利用心电图异常信号特征从心率中检测异常。异常信号模式可以用于对正常和异常心率进行分类。异常特征包括P信号状态、R信号状态、P R间隔率和双R间隔。本研究中使用的心电图数据来自MIT-BIH心律失常数据库。在对正常和异常心率进行分类的同时,已经使用了20个心电图数据来查看检测和分类性能。研究结果表明,在对正常心率和异常心率进行分类时,基于特征的准确率为90.00%,准确率为90.00%,灵敏度为90.00%。研究结果表明,异常特征可以用于心率的正常和异常分类。这种方法可以用于内存和大小都有限制的嵌入式系统设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrocardiogram Abnormal Classification Based on Abnormality Signal Feature
Heart rate abnormalities can lead to many cardiovascular diseases such as heart arrythmia, heart failure, heart valve disease and many more. Some cardiovascular disease can cause death. Abnormalities signal feature can be seen using electrocardiogram. Electrocardiogram is an electric signal record from heart activity. Normal heart and abnormal heart have a different electrocardiogram signal pattern. This research is aim to detect abnormality from heart rate using electrocardiogram abnormality signal feature. Abnormality signal pattern can be used to classify normal and abnormal heart rate. Abnormality feature consists of P signal condition, R signal condition, P R interval rate, and double R interval. Electrocardiogram data that used in this study is obtain from MIT-BIH Arrythmia database. 20 electrocardiogram data have been used to see detection and classification performance while classifying normal and abnormal heart rate. Research result shows that feature based has 90.00% in accuracy, 90.00%in precision, and 90.00% in sensitivity while classify normal and abnormal heart rate. Research result can conclude that abnormality feature can be used to classify normal and abnormal heart rate. This method can be used for embedded system device that has limitation in memory and size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1