用改进的人工蜂群算法寻找非阿基米德Epsilon评价DEA效率

Sara Zeidani, B. Asady, Mohsen Rostamy Malkhalifeh, T. Lotfi
{"title":"用改进的人工蜂群算法寻找非阿基米德Epsilon评价DEA效率","authors":"Sara Zeidani, B. Asady, Mohsen Rostamy Malkhalifeh, T. Lotfi","doi":"10.29020/nybg.ejpam.v16i3.4780","DOIUrl":null,"url":null,"abstract":"The artificial bee colony algorithm is one of the population-based optimization methods inspired by the evolutionary principles of the social behavior of bees. On the other hand, one of the sub-fields of operations research science is data envelopment analysis. There are some difficulties in DEA models for selecting the appropriate numerical value for an infinitesimal non-Archimedean epsilon. So far, various methods have been proposed to solve this problem and choose the suitable non-Archimedean epsilon. In order to solve the problem, the artificial bee colony algorithm (ABC), and modification of the original ABC algorithm (MABC) are adopted and proposed in this paper. The impacts of our proposed algorithms on the suitable non-Archimedean epsilon by solving only one linear programming (LP), instead of n LP are investigated. Finally, the performance of the proposed algorithms is evaluated by comparing the solutions obtained from GAMS software based on the presented examples.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the Modified Artificial Bee Colony Algorithm to Find the Non-Archimedean Epsilon for Evaluating the Efficiency in DEA\",\"authors\":\"Sara Zeidani, B. Asady, Mohsen Rostamy Malkhalifeh, T. Lotfi\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The artificial bee colony algorithm is one of the population-based optimization methods inspired by the evolutionary principles of the social behavior of bees. On the other hand, one of the sub-fields of operations research science is data envelopment analysis. There are some difficulties in DEA models for selecting the appropriate numerical value for an infinitesimal non-Archimedean epsilon. So far, various methods have been proposed to solve this problem and choose the suitable non-Archimedean epsilon. In order to solve the problem, the artificial bee colony algorithm (ABC), and modification of the original ABC algorithm (MABC) are adopted and proposed in this paper. The impacts of our proposed algorithms on the suitable non-Archimedean epsilon by solving only one linear programming (LP), instead of n LP are investigated. Finally, the performance of the proposed algorithms is evaluated by comparing the solutions obtained from GAMS software based on the presented examples.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

人工蜂群算法是受蜜蜂社会行为进化原理启发而提出的一种基于种群的优化方法。另一方面,运筹学的一个子领域是数据包络分析。在DEA模型中,对于无穷小的非阿基米德ε选择合适的数值存在一些困难。到目前为止,已经提出了各种方法来解决这个问题,并选择合适的非阿基米德的epsilon。为了解决这一问题,本文采用并提出了人工蜂群算法(artificial bee colony algorithm, ABC),并对原有的ABC算法(MABC)进行了改进。我们提出的算法只求解一个线性规划(LP)而不是n个线性规划(LP)对合适的非阿基米德epsilon的影响进行了研究。最后,通过比较GAMS软件给出的算例,对算法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using the Modified Artificial Bee Colony Algorithm to Find the Non-Archimedean Epsilon for Evaluating the Efficiency in DEA
The artificial bee colony algorithm is one of the population-based optimization methods inspired by the evolutionary principles of the social behavior of bees. On the other hand, one of the sub-fields of operations research science is data envelopment analysis. There are some difficulties in DEA models for selecting the appropriate numerical value for an infinitesimal non-Archimedean epsilon. So far, various methods have been proposed to solve this problem and choose the suitable non-Archimedean epsilon. In order to solve the problem, the artificial bee colony algorithm (ABC), and modification of the original ABC algorithm (MABC) are adopted and proposed in this paper. The impacts of our proposed algorithms on the suitable non-Archimedean epsilon by solving only one linear programming (LP), instead of n LP are investigated. Finally, the performance of the proposed algorithms is evaluated by comparing the solutions obtained from GAMS software based on the presented examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
期刊最新文献
On the Diophantine Equations $a^x+b^y+c^z=w^2$ Oscillatory Properties Test for Even-Order Di§erential Equations of Neutral type Metrical Fixed Point Results on \lowercase{b}-multiplicative metric spaces employing binary relaion Geodetic Roman Dominating Functions in a Graph Study on the Dynamical Analysis of a Family of Optimal Third Order Multiple-zero Finder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1