基于迁移学习和物联网的空置停车场信息系统

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of ICT Research and Applications Pub Date : 2018-12-31 DOI:10.5614/ITBJ.ICT.RES.APPL.2018.12.3.1
E. Jose, S. Veni
{"title":"基于迁移学习和物联网的空置停车场信息系统","authors":"E. Jose, S. Veni","doi":"10.5614/ITBJ.ICT.RES.APPL.2018.12.3.1","DOIUrl":null,"url":null,"abstract":"Parking information systems have become very important, especially in metropolitan areas as they help to save time, effort and fuel when searching for parking. This paper offers a novel low-cost deep learning approach to easily implement vacancy detection at outdoor parking spaces with CCTV surveillance. The proposed method also addresses issues due to perspective distortion in CCTV images. The architecture consists of three classifiers for checking the availability of parking spaces. They were developed on the TensorFlow platform by re-training MobileNet (a pre-trained Convolutional Neural Network (CNN)) model using the transfer learning technique. A performance analysis showed 88% accuracy for vacancy detection. An end-to-end application model with Internet of Things (IoT) and an Android application is also presented. Users can interact with the cloud using their Android application to get real-time updates on parking space availability and the parking location. In the future, an autonomous car could use this system as a V2I (Vehicle to Infrastructure) application in deciding the nearest parking space.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vacant Parking Lot Information System Using Transfer Learning and IoT\",\"authors\":\"E. Jose, S. Veni\",\"doi\":\"10.5614/ITBJ.ICT.RES.APPL.2018.12.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parking information systems have become very important, especially in metropolitan areas as they help to save time, effort and fuel when searching for parking. This paper offers a novel low-cost deep learning approach to easily implement vacancy detection at outdoor parking spaces with CCTV surveillance. The proposed method also addresses issues due to perspective distortion in CCTV images. The architecture consists of three classifiers for checking the availability of parking spaces. They were developed on the TensorFlow platform by re-training MobileNet (a pre-trained Convolutional Neural Network (CNN)) model using the transfer learning technique. A performance analysis showed 88% accuracy for vacancy detection. An end-to-end application model with Internet of Things (IoT) and an Android application is also presented. Users can interact with the cloud using their Android application to get real-time updates on parking space availability and the parking location. In the future, an autonomous car could use this system as a V2I (Vehicle to Infrastructure) application in deciding the nearest parking space.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2018.12.3.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2018.12.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

停车信息系统变得非常重要,尤其是在大都市地区,因为它们有助于在搜索停车时节省时间、精力和燃料。本文提供了一种新的低成本深度学习方法,可以通过CCTV监控轻松实现室外停车位的空置检测。所提出的方法还解决了由于CCTV图像中的透视失真而引起的问题。该体系结构由三个分类器组成,用于检查停车位的可用性。它们是在TensorFlow平台上通过使用迁移学习技术重新训练MobileNet(一种预先训练的卷积神经网络(CNN))模型而开发的。性能分析显示空位检测的准确率为88%。还提出了一个具有物联网(IoT)和安卓应用程序的端到端应用程序模型。用户可以使用他们的Android应用程序与云进行交互,以实时更新停车位的可用性和停车位置。未来,自动驾驶汽车可以使用该系统作为V2I(车辆到基础设施)应用程序来决定最近的停车位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vacant Parking Lot Information System Using Transfer Learning and IoT
Parking information systems have become very important, especially in metropolitan areas as they help to save time, effort and fuel when searching for parking. This paper offers a novel low-cost deep learning approach to easily implement vacancy detection at outdoor parking spaces with CCTV surveillance. The proposed method also addresses issues due to perspective distortion in CCTV images. The architecture consists of three classifiers for checking the availability of parking spaces. They were developed on the TensorFlow platform by re-training MobileNet (a pre-trained Convolutional Neural Network (CNN)) model using the transfer learning technique. A performance analysis showed 88% accuracy for vacancy detection. An end-to-end application model with Internet of Things (IoT) and an Android application is also presented. Users can interact with the cloud using their Android application to get real-time updates on parking space availability and the parking location. In the future, an autonomous car could use this system as a V2I (Vehicle to Infrastructure) application in deciding the nearest parking space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of ICT Research and Applications
Journal of ICT Research and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.60
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊介绍: Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Smart Card-based Access Control System using Isolated Many-to-Many Authentication Scheme for Electric Vehicle Charging Stations The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs Machine Learning-based Early Detection and Prognosis of the Covid-19 Pandemic Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification based on ConvMixer Architecture Generative Adversarial Networks Based Scene Generation on Indian Driving Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1