细数部分才能理解整体:对加州中央山谷Steelhead监测的再思考

Q3 Agricultural and Biological Sciences San Francisco Estuary and Watershed Science Pub Date : 2022-03-17 DOI:10.15447/sfews.2022v20iss20art2
J. Eschenroeder, Matthew L. Peterson, Michael Hellmair, Tyler J Pilger, D. Demko, Andrea Fuller
{"title":"细数部分才能理解整体:对加州中央山谷Steelhead监测的再思考","authors":"J. Eschenroeder, Matthew L. Peterson, Michael Hellmair, Tyler J Pilger, D. Demko, Andrea Fuller","doi":"10.15447/sfews.2022v20iss20art2","DOIUrl":null,"url":null,"abstract":"Steelhead (Oncorhynchus mykiss expressing an anadromous life history) in the Sacramento and San Joaquin rivers and their tributaries in California’s Central Valley (CCV) belong to a Distinct Population Segment (DPS) that is listed as threatened under the US Endangered Species Act. Although contemporary management and recovery plans include numerous planned and ongoing efforts seeking to aid in DPS recovery—such as gravel augmentation, manipulation of spring flows, and restoration of rearing and spawning habitat—a paucity of data precludes the possibility of evaluating the effect of these actions on populations of Steelhead in CCV streams. Knowledge gaps relating to historic and current abundance, population-specific ratios of resident and anadromous life-history expression, and the influence of hatchery-reared fish remain largely unaddressed. This is partly a result of aspects of Steelhead biology that make them difficult to monitor, including the multitude of factors that contribute to the expression of anadromy, polymorphic populations, and migration periods that coincide with challenging field conditions. However, these gaps in understanding are also partly the result of an institutional focus on Chinook Salmon (Oncorhynchus tshawytscha) and a pervasive notion that actions benefiting Chinook populations will also benefit Steelhead populations. To evaluate these gaps and to suggest approaches for assessing DPS recovery actions, we review available data and existing monitoring efforts, and consider the actions necessary to inform the development of targeted O. mykiss monitoring programs. Current management and recovery goals focus on abundance estimates of Steelhead only, yet current monitoring is insufficient for reliable estimates. We argue that a reallocation of monitoring resources to better understand the interaction between resident O. mykiss and Steelhead would provide better data to estimate the vital rates needed to evaluate the effects of recovery actions.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Counting the Parts to Understand the Whole: Rethinking Monitoring of Steelhead in California’s Central Valley\",\"authors\":\"J. Eschenroeder, Matthew L. Peterson, Michael Hellmair, Tyler J Pilger, D. Demko, Andrea Fuller\",\"doi\":\"10.15447/sfews.2022v20iss20art2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steelhead (Oncorhynchus mykiss expressing an anadromous life history) in the Sacramento and San Joaquin rivers and their tributaries in California’s Central Valley (CCV) belong to a Distinct Population Segment (DPS) that is listed as threatened under the US Endangered Species Act. Although contemporary management and recovery plans include numerous planned and ongoing efforts seeking to aid in DPS recovery—such as gravel augmentation, manipulation of spring flows, and restoration of rearing and spawning habitat—a paucity of data precludes the possibility of evaluating the effect of these actions on populations of Steelhead in CCV streams. Knowledge gaps relating to historic and current abundance, population-specific ratios of resident and anadromous life-history expression, and the influence of hatchery-reared fish remain largely unaddressed. This is partly a result of aspects of Steelhead biology that make them difficult to monitor, including the multitude of factors that contribute to the expression of anadromy, polymorphic populations, and migration periods that coincide with challenging field conditions. However, these gaps in understanding are also partly the result of an institutional focus on Chinook Salmon (Oncorhynchus tshawytscha) and a pervasive notion that actions benefiting Chinook populations will also benefit Steelhead populations. To evaluate these gaps and to suggest approaches for assessing DPS recovery actions, we review available data and existing monitoring efforts, and consider the actions necessary to inform the development of targeted O. mykiss monitoring programs. Current management and recovery goals focus on abundance estimates of Steelhead only, yet current monitoring is insufficient for reliable estimates. We argue that a reallocation of monitoring resources to better understand the interaction between resident O. mykiss and Steelhead would provide better data to estimate the vital rates needed to evaluate the effects of recovery actions.\",\"PeriodicalId\":38364,\"journal\":{\"name\":\"San Francisco Estuary and Watershed Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"San Francisco Estuary and Watershed Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15447/sfews.2022v20iss20art2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"San Francisco Estuary and Watershed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15447/sfews.2022v20iss20art2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

加利福尼亚中央谷萨克拉门托河和圣华金河及其支流中的钢头鱼(表达了溯河产卵生活史)属于《美国濒危物种法》所列的濒危种群。尽管当代的管理和恢复计划包括许多有计划和正在进行的努力,以帮助DPS的恢复,如增加砾石、控制春流以及恢复饲养和产卵栖息地,但由于缺乏数据,无法评估这些行动对CCV溪流中钢头鱼种群的影响。与历史和当前的丰度、居民和溯河产卵生命史表达的特定种群比例以及孵化场饲养的鱼类的影响有关的知识差距在很大程度上仍未得到解决。这在一定程度上是由于Steelhead生物学的某些方面使其难以监测的结果,包括导致anadromy表达的多种因素、多态种群以及与具有挑战性的野外条件相吻合的迁移期。然而,这些理解上的差距在一定程度上也是由于机构对奇努克鲑鱼(Oncorhynchus tshawytscha)的关注,以及一种普遍的观念,即有利于奇努克种群的行动也会有利于钢头种群。为了评估这些差距并提出评估DPS恢复行动的方法,我们审查了可用数据和现有的监测工作,并考虑了为制定有针对性的O.mykiss监测计划提供信息所需的行动。目前的管理和回收目标仅关注Steelhead的丰度估计,但目前的监测不足以进行可靠的估计。我们认为,重新分配监测资源以更好地了解居民O.mykiss和Steelhead之间的互动,将提供更好的数据来估计评估恢复行动效果所需的生命率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Counting the Parts to Understand the Whole: Rethinking Monitoring of Steelhead in California’s Central Valley
Steelhead (Oncorhynchus mykiss expressing an anadromous life history) in the Sacramento and San Joaquin rivers and their tributaries in California’s Central Valley (CCV) belong to a Distinct Population Segment (DPS) that is listed as threatened under the US Endangered Species Act. Although contemporary management and recovery plans include numerous planned and ongoing efforts seeking to aid in DPS recovery—such as gravel augmentation, manipulation of spring flows, and restoration of rearing and spawning habitat—a paucity of data precludes the possibility of evaluating the effect of these actions on populations of Steelhead in CCV streams. Knowledge gaps relating to historic and current abundance, population-specific ratios of resident and anadromous life-history expression, and the influence of hatchery-reared fish remain largely unaddressed. This is partly a result of aspects of Steelhead biology that make them difficult to monitor, including the multitude of factors that contribute to the expression of anadromy, polymorphic populations, and migration periods that coincide with challenging field conditions. However, these gaps in understanding are also partly the result of an institutional focus on Chinook Salmon (Oncorhynchus tshawytscha) and a pervasive notion that actions benefiting Chinook populations will also benefit Steelhead populations. To evaluate these gaps and to suggest approaches for assessing DPS recovery actions, we review available data and existing monitoring efforts, and consider the actions necessary to inform the development of targeted O. mykiss monitoring programs. Current management and recovery goals focus on abundance estimates of Steelhead only, yet current monitoring is insufficient for reliable estimates. We argue that a reallocation of monitoring resources to better understand the interaction between resident O. mykiss and Steelhead would provide better data to estimate the vital rates needed to evaluate the effects of recovery actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
San Francisco Estuary and Watershed Science
San Francisco Estuary and Watershed Science Environmental Science-Water Science and Technology
CiteScore
2.90
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊最新文献
Regional Diversity Trends of Nearshore Fish Assemblages of the Upper San Francisco Estuary Sub-Lethal Responses of Delta Smelt to Contaminants Under Different Flow Conditions Spatial Patterns of Water Supply and Use in California Managed Wetlands for Climate Action: Potential Greenhouse Gas and Subsidence Mitigation in the Sacramento–San Joaquin Delta Proofing Field and Laboratory Species Identification Procedures Developed for the Non-Native Osmerid Species Wakasagi (Hypomesus nipponensis) Using SHERLOCK-Based Genetic Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1