热处理引起木材的化学变化和硅溶胶渗透,以改善其性能:疏水性,热稳定性和表面硬度

IF 1.7 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Journal of Wood Chemistry and Technology Pub Date : 2022-02-13 DOI:10.1080/02773813.2022.2036193
Junyuan Jiang, Huixiang Li, Jinhui Pang, C. Mei
{"title":"热处理引起木材的化学变化和硅溶胶渗透,以改善其性能:疏水性,热稳定性和表面硬度","authors":"Junyuan Jiang, Huixiang Li, Jinhui Pang, C. Mei","doi":"10.1080/02773813.2022.2036193","DOIUrl":null,"url":null,"abstract":"Abstract Thermal modification could act as pretreatment for promoting silica sol impregnation in wood. It could create extra available channels and spaces for silica transportation and deposition owing to the presence of micro-cracks and enlarged pore size. The significant improvements on anti-hygroscopicity, hydrophobicity, and dimensional stability of treated wood were attributed to the degradation of cell wall polymer (hemicellulose, cellulose, and lignin) and filling effect of silica in wood. The synergistic effect contained the reduction on –OH concentration owing to thermal degradation, and consumption of –OH groups via the interaction (Si–O–Si cross linked networks and Si–O–C covalent bonds) between silica and wood matrix. Furthermore, the degradation of cell wall polymers resulted in the increase of crystallinity in wood. However, the crystallinity turned to decrease due to the amorphous silica impregnation. The silica impregnation could compensate the mass loss caused by thermal degradation, leading to various weight percentage gains (WPGs) that depended on treatment temperature. Moreover, owing to the coverage and penetration of mineral silica in wood, acting as a thermal barrier, the thermal stability and surface hardness of treated wood improved prominently.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"42 1","pages":"104 - 113"},"PeriodicalIF":1.7000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Heat treatment induces chemical changes and silica sol penetration in wood for properties improvement: hydrophobicity, thermal stability, and surface hardness\",\"authors\":\"Junyuan Jiang, Huixiang Li, Jinhui Pang, C. Mei\",\"doi\":\"10.1080/02773813.2022.2036193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Thermal modification could act as pretreatment for promoting silica sol impregnation in wood. It could create extra available channels and spaces for silica transportation and deposition owing to the presence of micro-cracks and enlarged pore size. The significant improvements on anti-hygroscopicity, hydrophobicity, and dimensional stability of treated wood were attributed to the degradation of cell wall polymer (hemicellulose, cellulose, and lignin) and filling effect of silica in wood. The synergistic effect contained the reduction on –OH concentration owing to thermal degradation, and consumption of –OH groups via the interaction (Si–O–Si cross linked networks and Si–O–C covalent bonds) between silica and wood matrix. Furthermore, the degradation of cell wall polymers resulted in the increase of crystallinity in wood. However, the crystallinity turned to decrease due to the amorphous silica impregnation. The silica impregnation could compensate the mass loss caused by thermal degradation, leading to various weight percentage gains (WPGs) that depended on treatment temperature. Moreover, owing to the coverage and penetration of mineral silica in wood, acting as a thermal barrier, the thermal stability and surface hardness of treated wood improved prominently.\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"42 1\",\"pages\":\"104 - 113\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2022.2036193\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2022.2036193","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 6

摘要

摘要热改性可以作为促进硅溶胶在木材中浸渍的预处理。由于存在微裂纹和扩大的孔径,它可以为二氧化硅的运输和沉积创造额外的可用通道和空间。处理木材的吸湿性、疏水性和尺寸稳定性的显著改善归因于细胞壁聚合物(半纤维素、纤维素和木质素)的降解和二氧化硅在木材中的填充作用。协同效应包括由于热降解而降低–OH浓度,以及通过二氧化硅和木材基质之间的相互作用(Si–O–Si交联网络和Si–O-C共价键)消耗–OH基团。此外,细胞壁聚合物的降解导致木材结晶度的增加。然而,由于无定形二氧化硅的浸渍,结晶度开始降低。二氧化硅浸渍可以补偿热降解引起的质量损失,导致不同的重量百分比增加(WPG),这取决于处理温度。此外,由于矿物二氧化硅在木材中的覆盖和渗透,作为隔热层,处理后的木材的热稳定性和表面硬度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat treatment induces chemical changes and silica sol penetration in wood for properties improvement: hydrophobicity, thermal stability, and surface hardness
Abstract Thermal modification could act as pretreatment for promoting silica sol impregnation in wood. It could create extra available channels and spaces for silica transportation and deposition owing to the presence of micro-cracks and enlarged pore size. The significant improvements on anti-hygroscopicity, hydrophobicity, and dimensional stability of treated wood were attributed to the degradation of cell wall polymer (hemicellulose, cellulose, and lignin) and filling effect of silica in wood. The synergistic effect contained the reduction on –OH concentration owing to thermal degradation, and consumption of –OH groups via the interaction (Si–O–Si cross linked networks and Si–O–C covalent bonds) between silica and wood matrix. Furthermore, the degradation of cell wall polymers resulted in the increase of crystallinity in wood. However, the crystallinity turned to decrease due to the amorphous silica impregnation. The silica impregnation could compensate the mass loss caused by thermal degradation, leading to various weight percentage gains (WPGs) that depended on treatment temperature. Moreover, owing to the coverage and penetration of mineral silica in wood, acting as a thermal barrier, the thermal stability and surface hardness of treated wood improved prominently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Wood Chemistry and Technology
Journal of Wood Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
3.70
自引率
20.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization. JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.
期刊最新文献
UV irradiation during fluorescence measurements affects the structures and fluorescence properties of isolated lignins in solution A lignin-based composite hydrogel for the removal of heavy metal ions from aqueous solution Sapwood and nikhra heartwood volatiles of two Combretaceae species traditionally used in Sudanese cosmetology and therapy The effect of hydrogen bonds on the reactivity of coniferous and deciduous dioxan lignins Tunable hydrophobicity and biodegradability of acetylated lignin/polyester fibrous mat for water/oil separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1