斜盘-滑块-活塞总成动力学对冷却集料压缩机轴承摩擦力矩的影响

M. Woźniak, T. Szydłowski, K. Siczek
{"title":"斜盘-滑块-活塞总成动力学对冷却集料压缩机轴承摩擦力矩的影响","authors":"M. Woźniak, T. Szydłowski, K. Siczek","doi":"10.2478/mme-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract The swash plate type compressor utilized in car air conditioning devices and cooling system was analyzed in this study. Proper dynamic behavior of the components in such a compressor affected the correct functioning of the whole system. The aim of the study was to identify the characteristics of the main motion components in the swash plate–slippers–piston assembly of the compressor and to estimate the friction torques in its bearings. Some models of this assembly are elaborated and presented in the paper. The main components of slipper complex motion were identified, such as reciprocal motion along the axis of piston, rotation around piston axis, and short-time rotation around its own axis. Friction torque in axial bearing was higher than in journal bearing and varied with the rotational angle. Friction torques in journal bearings varied with the rotational angle and had different courses for two bearings of the compressor.","PeriodicalId":53557,"journal":{"name":"Mechanics and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of dynamics of the swash plate–slippers–piston assembly on friction torques in bearings in compressor of cooling aggregate\",\"authors\":\"M. Woźniak, T. Szydłowski, K. Siczek\",\"doi\":\"10.2478/mme-2020-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The swash plate type compressor utilized in car air conditioning devices and cooling system was analyzed in this study. Proper dynamic behavior of the components in such a compressor affected the correct functioning of the whole system. The aim of the study was to identify the characteristics of the main motion components in the swash plate–slippers–piston assembly of the compressor and to estimate the friction torques in its bearings. Some models of this assembly are elaborated and presented in the paper. The main components of slipper complex motion were identified, such as reciprocal motion along the axis of piston, rotation around piston axis, and short-time rotation around its own axis. Friction torque in axial bearing was higher than in journal bearing and varied with the rotational angle. Friction torques in journal bearings varied with the rotational angle and had different courses for two bearings of the compressor.\",\"PeriodicalId\":53557,\"journal\":{\"name\":\"Mechanics and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mme-2020-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mme-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要对汽车空调装置及冷却系统中使用的斜盘式压缩机进行了分析。在这种压缩机中,部件的正确动态行为影响到整个系统的正确运行。研究的目的是确定压缩机斜盘-滑靴-活塞总成的主要运动部件的特性,并估计其轴承的摩擦力矩。文中详细介绍了该装配的一些模型。确定了滑靴复合运动的主要组成部分:沿活塞轴的往复运动、绕活塞轴的旋转运动以及绕自身轴的短时旋转运动。轴向轴承的摩擦力矩大于滑动轴承,且摩擦力矩随旋转角度的变化而变化。轴颈轴承的摩擦力矩随压缩机两个轴承的旋转角度而变化,且具有不同的行程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of dynamics of the swash plate–slippers–piston assembly on friction torques in bearings in compressor of cooling aggregate
Abstract The swash plate type compressor utilized in car air conditioning devices and cooling system was analyzed in this study. Proper dynamic behavior of the components in such a compressor affected the correct functioning of the whole system. The aim of the study was to identify the characteristics of the main motion components in the swash plate–slippers–piston assembly of the compressor and to estimate the friction torques in its bearings. Some models of this assembly are elaborated and presented in the paper. The main components of slipper complex motion were identified, such as reciprocal motion along the axis of piston, rotation around piston axis, and short-time rotation around its own axis. Friction torque in axial bearing was higher than in journal bearing and varied with the rotational angle. Friction torques in journal bearings varied with the rotational angle and had different courses for two bearings of the compressor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics and Mechanical Engineering
Mechanics and Mechanical Engineering Engineering-Automotive Engineering
自引率
0.00%
发文量
0
期刊最新文献
The use of FEM to evaluate the influence of logarithmic correction parameters of roller generators on the axle box bearing life Experimental and finite element analysis of slope stability treated by lime milk (case of El Amir Abdelkader embankment) Numerical study of coupled oscillator system using the classical Euler-Lagrange equations Experimental investigation of air pressure drops on different mesh layers using air filter performance test rig Effect of passive coupling on seismic interaction optimization of adjacent structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1