利用t积对张量GMRES和Golub-Kahan方法进行彩色图像处理

IF 0.7 4区 数学 Q2 Mathematics Electronic Journal of Linear Algebra Pub Date : 2021-07-23 DOI:10.13001/ELA.2021.5471
M. E. Guide, Alaa El Ichi, K. Jbilou, R. Sadaka
{"title":"利用t积对张量GMRES和Golub-Kahan方法进行彩色图像处理","authors":"M. E. Guide, Alaa El Ichi, K. Jbilou, R. Sadaka","doi":"10.13001/ELA.2021.5471","DOIUrl":null,"url":null,"abstract":"The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrate how tensor-based global approaches can be exploited to solve ill-posed problems arising from recovering blurry multichannel (color) images and videos, using the so-called Tikhonov regularization technique, to provide computable approximate regularized solutions. We also review a generalized cross-validation and discrepancy principle type of criterion for the selection of the regularization parameter in the Tikhonov regularization. Applications to image sequence processing are given to demonstrate the efficiency of the algorithms.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On tensor GMRES and Golub-Kahan methods via the T-product for color image processing\",\"authors\":\"M. E. Guide, Alaa El Ichi, K. Jbilou, R. Sadaka\",\"doi\":\"10.13001/ELA.2021.5471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrate how tensor-based global approaches can be exploited to solve ill-posed problems arising from recovering blurry multichannel (color) images and videos, using the so-called Tikhonov regularization technique, to provide computable approximate regularized solutions. We also review a generalized cross-validation and discrepancy principle type of criterion for the selection of the regularization parameter in the Tikhonov regularization. Applications to image sequence processing are given to demonstrate the efficiency of the algorithms.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ELA.2021.5471\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ELA.2021.5471","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 20

摘要

本文研究了求解大型多线性张量方程的张量迭代Krylov子空间方法。我们利用两个张量的t积定义了张量管全局Arnoldi和张量管全局Golub-Kahan双对角化算法。此外,我们说明了如何利用基于张量的全局方法来解决由恢复模糊的多通道(彩色)图像和视频引起的不适定问题,使用所谓的Tikhonov正则化技术,以提供可计算的近似正则化解决方案。我们还回顾了在Tikhonov正则化中选择正则化参数的广义交叉验证和差异原则类型的准则。最后给出了该算法在图像序列处理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On tensor GMRES and Golub-Kahan methods via the T-product for color image processing
The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrate how tensor-based global approaches can be exploited to solve ill-posed problems arising from recovering blurry multichannel (color) images and videos, using the so-called Tikhonov regularization technique, to provide computable approximate regularized solutions. We also review a generalized cross-validation and discrepancy principle type of criterion for the selection of the regularization parameter in the Tikhonov regularization. Applications to image sequence processing are given to demonstrate the efficiency of the algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
期刊最新文献
Diagonal-Schur complements of Nekrasov matrices The inverse of a symmetric nonnegative matrix can be copositive On condition numbers of quaternion matrix inverse and quaternion linear systems with multiple right-hand sides Unicyclic graphs and the inertia of the squared distance matrix Decompositions of matrices into a sum of invertible matrices and matrices of fixed nilpotence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1