{"title":"未来轻子对撞机的磁偶极矩","authors":"J. Howard, A. Rajaraman, R. Riley, T. Tait","doi":"10.31526/LHEP.2.2019.113","DOIUrl":null,"url":null,"abstract":"The magnetic moment of the $\\tau$ lepton is an interesting quantity that is potentially sensitive to physics beyond the Standard Model. Electroweak gauge invariance implies that a heavy new physics contribution to it takes the form of an operator which involves the Higgs boson, implying that rare Higgs decays are able to probe the same physics as $a_\\tau$. We examine the prospects for rare Higgs decays at future high energy lepton (electron or muon) colliders, and find that such a project collecting a few ab$^{-1}$ would be able to advance our understanding of this physics by roughly a factor of 10 compared to the expected reach of the high luminosity LHC.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The $\\\\tau$ Magnetic Dipole Moment at Future Lepton Colliders\",\"authors\":\"J. Howard, A. Rajaraman, R. Riley, T. Tait\",\"doi\":\"10.31526/LHEP.2.2019.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetic moment of the $\\\\tau$ lepton is an interesting quantity that is potentially sensitive to physics beyond the Standard Model. Electroweak gauge invariance implies that a heavy new physics contribution to it takes the form of an operator which involves the Higgs boson, implying that rare Higgs decays are able to probe the same physics as $a_\\\\tau$. We examine the prospects for rare Higgs decays at future high energy lepton (electron or muon) colliders, and find that such a project collecting a few ab$^{-1}$ would be able to advance our understanding of this physics by roughly a factor of 10 compared to the expected reach of the high luminosity LHC.\",\"PeriodicalId\":36085,\"journal\":{\"name\":\"Letters in High Energy Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31526/LHEP.2.2019.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31526/LHEP.2.2019.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The $\tau$ Magnetic Dipole Moment at Future Lepton Colliders
The magnetic moment of the $\tau$ lepton is an interesting quantity that is potentially sensitive to physics beyond the Standard Model. Electroweak gauge invariance implies that a heavy new physics contribution to it takes the form of an operator which involves the Higgs boson, implying that rare Higgs decays are able to probe the same physics as $a_\tau$. We examine the prospects for rare Higgs decays at future high energy lepton (electron or muon) colliders, and find that such a project collecting a few ab$^{-1}$ would be able to advance our understanding of this physics by roughly a factor of 10 compared to the expected reach of the high luminosity LHC.