{"title":"RMSProp保证收敛的超参数选择","authors":"Jinlan Liu, Dongpo Xu, Huisheng Zhang, Danilo Mandic","doi":"10.1007/s11571-022-09845-8","DOIUrl":null,"url":null,"abstract":"<p><p>RMSProp is one of the most popular stochastic optimization algorithms in deep learning applications. However, recent work has pointed out that this method may not converge to the optimal solution even in simple convex settings. To this end, we propose a time-varying version of RMSProp to fix the non-convergence issues. Specifically, the hyperparameter, <math><msub><mi>β</mi> <mi>t</mi></msub> </math> , is considered as a time-varying sequence rather than a fine-tuned constant. We also provide a rigorous proof that the RMSProp can converge to critical points even for smooth and non-convex objectives, with a convergence rate of order <math><mrow><mi>O</mi> <mo>(</mo> <mo>log</mo> <mi>T</mi> <mo>/</mo> <msqrt><mi>T</mi></msqrt> <mo>)</mo></mrow> </math> . This provides a new understanding of RMSProp divergence, a common issue in practical applications. Finally, numerical experiments show that time-varying RMSProp exhibits advantages over standard RMSProp on benchmark datasets and support the theoretical results.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":" ","pages":"3227-3237"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655782/pdf/","citationCount":"0","resultStr":"{\"title\":\"On hyper-parameter selection for guaranteed convergence of RMSProp.\",\"authors\":\"Jinlan Liu, Dongpo Xu, Huisheng Zhang, Danilo Mandic\",\"doi\":\"10.1007/s11571-022-09845-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RMSProp is one of the most popular stochastic optimization algorithms in deep learning applications. However, recent work has pointed out that this method may not converge to the optimal solution even in simple convex settings. To this end, we propose a time-varying version of RMSProp to fix the non-convergence issues. Specifically, the hyperparameter, <math><msub><mi>β</mi> <mi>t</mi></msub> </math> , is considered as a time-varying sequence rather than a fine-tuned constant. We also provide a rigorous proof that the RMSProp can converge to critical points even for smooth and non-convex objectives, with a convergence rate of order <math><mrow><mi>O</mi> <mo>(</mo> <mo>log</mo> <mi>T</mi> <mo>/</mo> <msqrt><mi>T</mi></msqrt> <mo>)</mo></mrow> </math> . This provides a new understanding of RMSProp divergence, a common issue in practical applications. Finally, numerical experiments show that time-varying RMSProp exhibits advantages over standard RMSProp on benchmark datasets and support the theoretical results.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\" \",\"pages\":\"3227-3237\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655782/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-022-09845-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-022-09845-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
RMSProp是深度学习应用中最流行的随机优化算法之一。然而,最近的工作指出,即使在简单的凸设置下,这种方法也可能不会收敛到最优解。为此,我们提出了一个时变版本的RMSProp来解决不收敛问题。具体来说,超参数β t被认为是一个时变序列,而不是一个微调常数。我们还提供了一个严格的证明,即使对于光滑和非凸目标,RMSProp也可以收敛到临界点,收敛速度为O (log T / T)阶。这为RMSProp偏差提供了一个新的认识,RMSProp偏差是实际应用中常见的问题。最后,数值实验表明,时变RMSProp在基准数据集上表现出优于标准RMSProp的优势,并支持理论结果。
On hyper-parameter selection for guaranteed convergence of RMSProp.
RMSProp is one of the most popular stochastic optimization algorithms in deep learning applications. However, recent work has pointed out that this method may not converge to the optimal solution even in simple convex settings. To this end, we propose a time-varying version of RMSProp to fix the non-convergence issues. Specifically, the hyperparameter, , is considered as a time-varying sequence rather than a fine-tuned constant. We also provide a rigorous proof that the RMSProp can converge to critical points even for smooth and non-convex objectives, with a convergence rate of order . This provides a new understanding of RMSProp divergence, a common issue in practical applications. Finally, numerical experiments show that time-varying RMSProp exhibits advantages over standard RMSProp on benchmark datasets and support the theoretical results.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.