2021年世界机器人大赛中与事件相关的无训练分类方法综述

Huanyu Wu, Dongrui Wu
{"title":"2021年世界机器人大赛中与事件相关的无训练分类方法综述","authors":"Huanyu Wu, Dongrui Wu","doi":"10.26599/BSA.2022.9050001","DOIUrl":null,"url":null,"abstract":"Recently, rapid serial visual presentation (RSVP), as a new event- related potential (ERP) paradigm, has become one of the most popular forms in electroencephalogram signal processing technologies. Several improvement approaches have been proposed to improve the performance of RSVP analysis. In brain–computer interface systems based on RSVP, the family of approaches that do not depend on training specific parameters is essential. The participating teams proposed several effective training-free frameworks of algorithms in the ERP competition of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper discusses the effectiveness of various approaches in improving the performance of the system without requiring training and suggests how to apply these approaches in a practical system. First, appropriate preprocessing techniques will greatly improve the results. Then, the non-deep learning algorithm may be more stable than the deep learning approach. Furthermore, ensemble learning can make the model more stable and robust.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Review of training-free event-related potential classification approaches in the World Robot Contest 2021\",\"authors\":\"Huanyu Wu, Dongrui Wu\",\"doi\":\"10.26599/BSA.2022.9050001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, rapid serial visual presentation (RSVP), as a new event- related potential (ERP) paradigm, has become one of the most popular forms in electroencephalogram signal processing technologies. Several improvement approaches have been proposed to improve the performance of RSVP analysis. In brain–computer interface systems based on RSVP, the family of approaches that do not depend on training specific parameters is essential. The participating teams proposed several effective training-free frameworks of algorithms in the ERP competition of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper discusses the effectiveness of various approaches in improving the performance of the system without requiring training and suggests how to apply these approaches in a practical system. First, appropriate preprocessing techniques will greatly improve the results. Then, the non-deep learning algorithm may be more stable than the deep learning approach. Furthermore, ensemble learning can make the model more stable and robust.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2022.9050001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2022.9050001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,快速序列视觉呈现(RSVP)作为一种新的事件相关电位(ERP)范式,已成为脑电图信号处理技术中最流行的形式之一。已经提出了几种改进方法来提高RSVP分析的性能。在基于RSVP的脑机接口系统中,不依赖于训练特定参数的方法家族是必不可少的。参赛团队在2021年世界机器人大赛脑机接口控制机器人大赛ERP竞赛中提出了几种有效的无训练算法框架。本文讨论了在不需要培训的情况下提高系统性能的各种方法的有效性,并建议如何在实际系统中应用这些方法。首先,适当的预处理技术将大大提高结果。然后,非深度学习算法可能比深度学习方法更稳定。此外,集成学习可以使模型更加稳定和鲁棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of training-free event-related potential classification approaches in the World Robot Contest 2021
Recently, rapid serial visual presentation (RSVP), as a new event- related potential (ERP) paradigm, has become one of the most popular forms in electroencephalogram signal processing technologies. Several improvement approaches have been proposed to improve the performance of RSVP analysis. In brain–computer interface systems based on RSVP, the family of approaches that do not depend on training specific parameters is essential. The participating teams proposed several effective training-free frameworks of algorithms in the ERP competition of the BCI Controlled Robot Contest in World Robot Contest 2021. This paper discusses the effectiveness of various approaches in improving the performance of the system without requiring training and suggests how to apply these approaches in a practical system. First, appropriate preprocessing techniques will greatly improve the results. Then, the non-deep learning algorithm may be more stable than the deep learning approach. Furthermore, ensemble learning can make the model more stable and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
期刊最新文献
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022 Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group Algorithm contest of motor imagery BCI in the World Robot Contest 2022: A survey Winning algorithms in BCI Controlled Robot Contest in World Robot Contest 2022: BCI Turing Test Overview of the winning approaches in 2022 World Robot Contest Championship–Asynchronous SSVEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1