可穿戴防紫外线热电发电机织物纳米氧化锌生长研究进展

IF 3.4 Q2 ENGINEERING, BIOMEDICAL Wearable technologies Pub Date : 2018-10-03 DOI:10.5772/INTECHOPEN.76672
Pandiyarasan Veluswamy, S. Sathiyamoorthy, H. Ikeda, M. Elayaperumal, M. Maaza
{"title":"可穿戴防紫外线热电发电机织物纳米氧化锌生长研究进展","authors":"Pandiyarasan Veluswamy, S. Sathiyamoorthy, H. Ikeda, M. Elayaperumal, M. Maaza","doi":"10.5772/INTECHOPEN.76672","DOIUrl":null,"url":null,"abstract":"Traditional materials for thermoelectric such as bismuth telluride have been studied and utilized commercially for the last half century, but recent advancements in materials selection are one of the principal function of the active thermoelectric device as it determines the reliability of the fabrication regarding technical and economic aspects. Recently, many researcher’s efforts have been made to utilize oxide nanomaterials for wearable thermo - electric power generator (WTPG) applications which may provide environmental stable, mechanical flexibility, and light weight with low cost of manufacturing. In precise, fabric containing oxide metals have shown great promise as P−/N-type materials with improved transport and UV shielding properties. On the other hand, we have focused on ZnO nano - structures as a high-efficiency WTPG material because they are non-toxic to skin, inex pensive and easy to obtain and possess attractive electronic properties, which means that they are available for clothing with low-cost fabrication. To our observation, we are chap tering about the thermoelectric properties of ZnO and their composite nanostructures coated cotton fabric via the solvothermal method for the first time.","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76672","citationCount":"3","resultStr":"{\"title\":\"Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding\",\"authors\":\"Pandiyarasan Veluswamy, S. Sathiyamoorthy, H. Ikeda, M. Elayaperumal, M. Maaza\",\"doi\":\"10.5772/INTECHOPEN.76672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional materials for thermoelectric such as bismuth telluride have been studied and utilized commercially for the last half century, but recent advancements in materials selection are one of the principal function of the active thermoelectric device as it determines the reliability of the fabrication regarding technical and economic aspects. Recently, many researcher’s efforts have been made to utilize oxide nanomaterials for wearable thermo - electric power generator (WTPG) applications which may provide environmental stable, mechanical flexibility, and light weight with low cost of manufacturing. In precise, fabric containing oxide metals have shown great promise as P−/N-type materials with improved transport and UV shielding properties. On the other hand, we have focused on ZnO nano - structures as a high-efficiency WTPG material because they are non-toxic to skin, inex pensive and easy to obtain and possess attractive electronic properties, which means that they are available for clothing with low-cost fabrication. To our observation, we are chap tering about the thermoelectric properties of ZnO and their composite nanostructures coated cotton fabric via the solvothermal method for the first time.\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2018-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5772/INTECHOPEN.76672\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

摘要

在过去的半个世纪里,传统的热电材料,如碲化铋,已经在商业上进行了研究和利用,但材料选择方面的最新进展是有源热电器件的主要功能之一,因为它决定了制造在技术和经济方面的可靠性。近年来,许多研究人员致力于将氧化物纳米材料用于可穿戴热电发电机(WTPG)应用,该应用可以提供环境稳定、机械灵活性和重量轻、制造成本低的特点。确切地说,含有氧化物金属的织物作为P−/N型材料显示出巨大的前景,具有改善的传输和紫外线屏蔽性能。另一方面,我们关注ZnO纳米结构作为一种高效的WTPG材料,因为它们对皮肤无毒、无需补偿、易于获得,并且具有吸引人的电子性能,这意味着它们可以用于低成本制造的服装。根据我们的观察,我们首次通过溶剂热法研究了ZnO及其复合纳米结构涂层棉布的热电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding
Traditional materials for thermoelectric such as bismuth telluride have been studied and utilized commercially for the last half century, but recent advancements in materials selection are one of the principal function of the active thermoelectric device as it determines the reliability of the fabrication regarding technical and economic aspects. Recently, many researcher’s efforts have been made to utilize oxide nanomaterials for wearable thermo - electric power generator (WTPG) applications which may provide environmental stable, mechanical flexibility, and light weight with low cost of manufacturing. In precise, fabric containing oxide metals have shown great promise as P−/N-type materials with improved transport and UV shielding properties. On the other hand, we have focused on ZnO nano - structures as a high-efficiency WTPG material because they are non-toxic to skin, inex pensive and easy to obtain and possess attractive electronic properties, which means that they are available for clothing with low-cost fabrication. To our observation, we are chap tering about the thermoelectric properties of ZnO and their composite nanostructures coated cotton fabric via the solvothermal method for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Smart interfaces to assist the operator in the context of industry 4.0 with a 5S human-centric approach. The effect of active exoskeleton support with different lumbar-to-hip support ratios on spinal musculoskeletal loading and lumbar kinematics during lifting. Identifying internal and external shoulder rotation using a kirigami-based shoulder patch. Design, modeling, and preliminary evaluation of a simple wrist-hand stretching orthosis for neurologically impaired patients. Novel neuromuscular controllers with simplified muscle model and enhanced reflex modulation: A comparative study in hip exoskeletons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1