寻找关键驱动因素的贝叶斯敏感性特异性和ROC分析

S. Lipovetsky, Michael Conklin
{"title":"寻找关键驱动因素的贝叶斯敏感性特异性和ROC分析","authors":"S. Lipovetsky, Michael Conklin","doi":"10.22237/jmasm/1619481960","DOIUrl":null,"url":null,"abstract":"Finding key drivers in regression modeling via Bayesian Sensitivity-Specificity and Receiver Operating Characteristic is suggested, and clearly interpretable results are obtained. Numerical comparisons with other techniques show that this methodology can be useful in practical statistical modeling and analysis helping to researchers and managers in making meaningful decisions.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bayesian Sensitivity-Specificity and ROC Analysis for Finding Key Drivers\",\"authors\":\"S. Lipovetsky, Michael Conklin\",\"doi\":\"10.22237/jmasm/1619481960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding key drivers in regression modeling via Bayesian Sensitivity-Specificity and Receiver Operating Characteristic is suggested, and clearly interpretable results are obtained. Numerical comparisons with other techniques show that this methodology can be useful in practical statistical modeling and analysis helping to researchers and managers in making meaningful decisions.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1619481960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1619481960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

建议通过贝叶斯灵敏度特异性和接收器操作特性来寻找回归建模中的关键驱动因素,并获得了可解释的结果。与其他技术的数值比较表明,该方法可用于实际的统计建模和分析,有助于研究人员和管理人员做出有意义的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Sensitivity-Specificity and ROC Analysis for Finding Key Drivers
Finding key drivers in regression modeling via Bayesian Sensitivity-Specificity and Receiver Operating Characteristic is suggested, and clearly interpretable results are obtained. Numerical comparisons with other techniques show that this methodology can be useful in practical statistical modeling and analysis helping to researchers and managers in making meaningful decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
期刊最新文献
The Performance of the Maximum Likelihood Estimator for the Bell Distribution for Count Data Proportionality Adjusted Ratio-Type Calibration Estimators of Population Mean Under Stratified Sampling Moment Properties of Record Values from Rayleigh Lomax Distribution and Characterization Smoothing of Estimators of Population mean using Calibration Technique with Sample Errors Bayesian Estimation and Prediction for Inverse Power Maxwell Distribution with Applications to Tax Revenue and Health Care Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1