胆汁通过胆道引流管流动的流体力学原理

Wenguang Li
{"title":"胆汁通过胆道引流管流动的流体力学原理","authors":"Wenguang Li","doi":"10.17489/biohun/2019/1/03","DOIUrl":null,"url":null,"abstract":"Obstructive jaundice in the biliary tract can infect blood and result in mortality with a high rate. Percutaneous transhepatic biliary drainage (PTBD) with catheters is a useful solution discharging the obstructive jaundice. However, the elements of fluid mechanics showing clinical performance of a PTBD catheter have been documented little so far. In the article, empirical relationships between bile flow rate and pressure gradient in PTBD catheters were studied in terms of equivalent friction factor for the first time. Firstly, an equivalent friction factor in a catheter was raised and determined based on existing in vitro experimental data of bile flow through the catheters with different materials, various inner diameters and lengths under various pressure differences. Then, an empirical correlation of bile flow rate through a catheter was established based on pressure gradient, inner diameter and bile viscosity. The correlation was used to identify effects of catheter inner diameter and bile viscosity on the bile flow rate under the physiological bile pressure difference across obstructed common bile ducts. The feature of minor hydraulic losses in the catheters was clarified, too. The proposed equivalent friction factor was proportional to Reynolds number in a power of -0.654 in comparison with a power of -1 for the fully developed laminar flow in circular pipes. The bile flow rate through a catheter was proportional to inner diameter, kinematic viscosity, and pressure gradient in the powers of 3.2, -0.5 and 0.74, respectively. The minor hydraulic losses could be significant when Reynolds number was greater than 100.","PeriodicalId":30208,"journal":{"name":"Biomechanica Hungarica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The elements of fluid mechanics of bile flow through biliary drainage catheters\",\"authors\":\"Wenguang Li\",\"doi\":\"10.17489/biohun/2019/1/03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstructive jaundice in the biliary tract can infect blood and result in mortality with a high rate. Percutaneous transhepatic biliary drainage (PTBD) with catheters is a useful solution discharging the obstructive jaundice. However, the elements of fluid mechanics showing clinical performance of a PTBD catheter have been documented little so far. In the article, empirical relationships between bile flow rate and pressure gradient in PTBD catheters were studied in terms of equivalent friction factor for the first time. Firstly, an equivalent friction factor in a catheter was raised and determined based on existing in vitro experimental data of bile flow through the catheters with different materials, various inner diameters and lengths under various pressure differences. Then, an empirical correlation of bile flow rate through a catheter was established based on pressure gradient, inner diameter and bile viscosity. The correlation was used to identify effects of catheter inner diameter and bile viscosity on the bile flow rate under the physiological bile pressure difference across obstructed common bile ducts. The feature of minor hydraulic losses in the catheters was clarified, too. The proposed equivalent friction factor was proportional to Reynolds number in a power of -0.654 in comparison with a power of -1 for the fully developed laminar flow in circular pipes. The bile flow rate through a catheter was proportional to inner diameter, kinematic viscosity, and pressure gradient in the powers of 3.2, -0.5 and 0.74, respectively. The minor hydraulic losses could be significant when Reynolds number was greater than 100.\",\"PeriodicalId\":30208,\"journal\":{\"name\":\"Biomechanica Hungarica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanica Hungarica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17489/biohun/2019/1/03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanica Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17489/biohun/2019/1/03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胆道梗阻性黄疸可感染血液并导致高死亡率。带导管的经皮肝穿刺胆道引流(PTBD)是一种有效的解决梗阻性黄疸的方法。然而,迄今为止,显示PTBD导管临床性能的流体力学元素很少被记录在案。本文首次从等效摩擦系数的角度研究了PTBD导管中胆汁流速与压力梯度之间的经验关系。首先,根据现有的不同材料、不同内径和长度的导管在不同压差下胆汁流动的体外实验数据,提出并确定了导管中的等效摩擦系数。然后,根据压力梯度、内径和胆汁粘度建立了通过导管的胆汁流速的经验相关性。该相关性用于确定在生理胆汁压差下,导管内径和胆汁粘度对阻塞的总胆管胆汁流速的影响。导管中轻微液压损失的特征也得到了澄清。所提出的等效摩擦系数与雷诺数成正比,幂为-0.654,而圆形管道中完全发展层流的幂为-1。通过导管的胆汁流速与内径、运动粘度和压力梯度成正比,其幂分别为3.2、-0.5和0.74。当雷诺数大于100时,较小的水力损失可能是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The elements of fluid mechanics of bile flow through biliary drainage catheters
Obstructive jaundice in the biliary tract can infect blood and result in mortality with a high rate. Percutaneous transhepatic biliary drainage (PTBD) with catheters is a useful solution discharging the obstructive jaundice. However, the elements of fluid mechanics showing clinical performance of a PTBD catheter have been documented little so far. In the article, empirical relationships between bile flow rate and pressure gradient in PTBD catheters were studied in terms of equivalent friction factor for the first time. Firstly, an equivalent friction factor in a catheter was raised and determined based on existing in vitro experimental data of bile flow through the catheters with different materials, various inner diameters and lengths under various pressure differences. Then, an empirical correlation of bile flow rate through a catheter was established based on pressure gradient, inner diameter and bile viscosity. The correlation was used to identify effects of catheter inner diameter and bile viscosity on the bile flow rate under the physiological bile pressure difference across obstructed common bile ducts. The feature of minor hydraulic losses in the catheters was clarified, too. The proposed equivalent friction factor was proportional to Reynolds number in a power of -0.654 in comparison with a power of -1 for the fully developed laminar flow in circular pipes. The bile flow rate through a catheter was proportional to inner diameter, kinematic viscosity, and pressure gradient in the powers of 3.2, -0.5 and 0.74, respectively. The minor hydraulic losses could be significant when Reynolds number was greater than 100.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
期刊最新文献
Utánpótláskorú kézilabdázók alsóvégtag állapotfelmérő vizsgálatainak műszerezése Investigation of the failure process of metal-polymer implants by 3D scanning Az egyensúlyvisszanyerési mozgás formája és eredményessége a hirtelen irányváltoztatási teszt során fiatal kosárlabdázók esetében Ízületi szöghelyzet-specifikus erődeficit és EMG aktivitás a quadriceps femoris izomban mikrosérülést okozó edzést követően A futás és szökdelés tömeg-rugó modell dinamikai viselkedésének globális feltérképezése és paraméterhangolása
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1