包括频率和温度的水泥混凝土综合介电模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-09-23 DOI:10.1680/jadcr.21.00196
Meili Meng, Zhanglan Chen, F. Wang
{"title":"包括频率和温度的水泥混凝土综合介电模型","authors":"Meili Meng, Zhanglan Chen, F. Wang","doi":"10.1680/jadcr.21.00196","DOIUrl":null,"url":null,"abstract":"The dielectric properties of cement concrete are not only related to the dielectric properties and volume ratio of each component, but also related to frequency and temperature. In order to analyze these influencing factors, a dielectric constant test was done in the laboratory. Experimental results show that the dielectric constants decrease linearly with temperature increasing and decreases exponentially with the increase of frequency. Based on the experimental rules, a new dielectric model including frequency and temperature is established and verified by experiments. The verification results show that the calculation accuracy of the comprehensive dielectric model after considering the influence of frequency and temperature is improved by 25.5%, which meets the requirements of engineering detection accuracy. The model is applied to engineering practice, and the calculation methods of pavement structural layer thickness and moisture content are developed. The results show that the comprehensive dielectric model established in this paper has smaller error and higher accuracy. Using this dielectric model, the data conversion between different frequency and temperature can be achieved. The research results of this paper can provide reference and basis for the quality evaluation of concrete structures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comprehensive dielectric model of cement concrete including frequency and temperature\",\"authors\":\"Meili Meng, Zhanglan Chen, F. Wang\",\"doi\":\"10.1680/jadcr.21.00196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dielectric properties of cement concrete are not only related to the dielectric properties and volume ratio of each component, but also related to frequency and temperature. In order to analyze these influencing factors, a dielectric constant test was done in the laboratory. Experimental results show that the dielectric constants decrease linearly with temperature increasing and decreases exponentially with the increase of frequency. Based on the experimental rules, a new dielectric model including frequency and temperature is established and verified by experiments. The verification results show that the calculation accuracy of the comprehensive dielectric model after considering the influence of frequency and temperature is improved by 25.5%, which meets the requirements of engineering detection accuracy. The model is applied to engineering practice, and the calculation methods of pavement structural layer thickness and moisture content are developed. The results show that the comprehensive dielectric model established in this paper has smaller error and higher accuracy. Using this dielectric model, the data conversion between different frequency and temperature can be achieved. The research results of this paper can provide reference and basis for the quality evaluation of concrete structures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.21.00196\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.21.00196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

水泥混凝土的介电性能不仅与各成分的介电特性和体积比有关,还与频率和温度有关。为了分析这些影响因素,在实验室中进行了介电常数测试。实验结果表明,介电常数随温度的升高呈线性下降,随频率的升高呈指数下降。根据实验规律,建立了一个新的包含频率和温度的介质模型,并通过实验进行了验证。验证结果表明,综合介质模型在考虑频率和温度影响后,计算精度提高了25.5%,满足工程检测精度要求。将该模型应用于工程实践,提出了路面结构层厚度和含水量的计算方法。结果表明,本文建立的综合介质模型误差较小,精度较高。使用该介质模型,可以实现不同频率和温度之间的数据转换。本文的研究成果可为混凝土结构的质量评价提供参考和依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive dielectric model of cement concrete including frequency and temperature
The dielectric properties of cement concrete are not only related to the dielectric properties and volume ratio of each component, but also related to frequency and temperature. In order to analyze these influencing factors, a dielectric constant test was done in the laboratory. Experimental results show that the dielectric constants decrease linearly with temperature increasing and decreases exponentially with the increase of frequency. Based on the experimental rules, a new dielectric model including frequency and temperature is established and verified by experiments. The verification results show that the calculation accuracy of the comprehensive dielectric model after considering the influence of frequency and temperature is improved by 25.5%, which meets the requirements of engineering detection accuracy. The model is applied to engineering practice, and the calculation methods of pavement structural layer thickness and moisture content are developed. The results show that the comprehensive dielectric model established in this paper has smaller error and higher accuracy. Using this dielectric model, the data conversion between different frequency and temperature can be achieved. The research results of this paper can provide reference and basis for the quality evaluation of concrete structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1