根据不同MRI序列的关节强度分布计算的纹理特征能否准确预测前列腺癌症分级?

V. Stavrinides, L. C. Echeverria, H. Whitaker
{"title":"根据不同MRI序列的关节强度分布计算的纹理特征能否准确预测前列腺癌症分级?","authors":"V. Stavrinides, L. C. Echeverria, H. Whitaker","doi":"10.21037/JMAI.2018.11.01","DOIUrl":null,"url":null,"abstract":"The diagnostic landscape of prostate cancer has evolved rapidly, from prostate-specific antigen (PSA) testing to exciting new technologies that allow visualization of the disease, moving away from random sampling to targeted biopsies. Multiparametric magnetic resonance imaging (mpMRI) is a new modality that combines T2-weighted (T2W), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, each designed to reveal specific microstructural features typically associated with malignancy such as increased vascularity and cellularity.","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can texture features computed from the joint intensity distribution of different MRI sequences accurately predict prostate cancer grade?\",\"authors\":\"V. Stavrinides, L. C. Echeverria, H. Whitaker\",\"doi\":\"10.21037/JMAI.2018.11.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnostic landscape of prostate cancer has evolved rapidly, from prostate-specific antigen (PSA) testing to exciting new technologies that allow visualization of the disease, moving away from random sampling to targeted biopsies. Multiparametric magnetic resonance imaging (mpMRI) is a new modality that combines T2-weighted (T2W), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, each designed to reveal specific microstructural features typically associated with malignancy such as increased vascularity and cellularity.\",\"PeriodicalId\":73815,\"journal\":{\"name\":\"Journal of medical artificial intelligence\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/JMAI.2018.11.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/JMAI.2018.11.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从前列腺特异性抗原(PSA)检测到允许疾病可视化的令人兴奋的新技术,从随机采样到靶向活检,癌症的诊断格局已经迅速发展。多参数磁共振成像(mpMRI)是一种新的模式,它结合了T2加权(T2W)、扩散加权(DW)和动态对比增强(DCE)序列,每种序列都旨在揭示通常与恶性肿瘤相关的特定微观结构特征,如血管和细胞增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can texture features computed from the joint intensity distribution of different MRI sequences accurately predict prostate cancer grade?
The diagnostic landscape of prostate cancer has evolved rapidly, from prostate-specific antigen (PSA) testing to exciting new technologies that allow visualization of the disease, moving away from random sampling to targeted biopsies. Multiparametric magnetic resonance imaging (mpMRI) is a new modality that combines T2-weighted (T2W), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, each designed to reveal specific microstructural features typically associated with malignancy such as increased vascularity and cellularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Artificial intelligence in periodontology and implantology—a narrative review Exploring the capabilities and limitations of large language models in nuclear medicine knowledge with primary focus on GPT-3.5, GPT-4 and Google Bard Hybrid artificial intelligence outcome prediction using features extraction from stress perfusion cardiac magnetic resonance images and electronic health records Analysis of factors influencing maternal mortality and newborn health—a machine learning approach Efficient glioma grade prediction using learned features extracted from convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1