具有SDST、并行工作站和学习效应的混合模型装配线平衡问题的混合无意识搜索算法

Moein Asadi-Zonouz, M. Khalili, Hamed Tayebi
{"title":"具有SDST、并行工作站和学习效应的混合模型装配线平衡问题的混合无意识搜索算法","authors":"Moein Asadi-Zonouz, M. Khalili, Hamed Tayebi","doi":"10.22094/JOIE.2020.579974.1605","DOIUrl":null,"url":null,"abstract":"Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA outperforms GA and ACOGA.","PeriodicalId":36956,"journal":{"name":"Journal of Optimization in Industrial Engineering","volume":"13 1","pages":"123-140"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect\",\"authors\":\"Moein Asadi-Zonouz, M. Khalili, Hamed Tayebi\",\"doi\":\"10.22094/JOIE.2020.579974.1605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA outperforms GA and ACOGA.\",\"PeriodicalId\":36956,\"journal\":{\"name\":\"Journal of Optimization in Industrial Engineering\",\"volume\":\"13 1\",\"pages\":\"123-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization in Industrial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22094/JOIE.2020.579974.1605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization in Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22094/JOIE.2020.579974.1605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

由于产品的多样性,不同型号的同时生产在生产系统中具有重要作用。此外,考虑生产线设计中的现实约束在最近的研究中引起了很多关注。由于装配线平衡问题是NP难问题,因此需要有效的方法来解决这类问题。考虑到并行工作站、分区约束、序列相关设置时间和学习效果等现实条件,提出了一种基于无意识搜索算法(USGA)的混合方法来解决混合模型装配线平衡问题。该方法是无意识搜索算法的一个改进版本,采用遗传算法的算子作为局部搜索步骤。在一组测试问题上测试了该算法的性能,并与遗传算法和ACOGA进行了比较。实验结果表明,USGA的性能优于GA和ACOGA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA outperforms GA and ACOGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optimization in Industrial Engineering
Journal of Optimization in Industrial Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.90
自引率
0.00%
发文量
0
审稿时长
32 weeks
期刊最新文献
Stochastic analysis of k-out-of-n: G type of repairable system in combination of subsystems with controllers and multi repair approach Developing a transfer point location problem considering normal demands distribution A bi-objective non-linear approach for determining the ordering strategy for group B in ABC analysis inventory Analysis of Causal Relationships Effective Factors on the Green Supplier Selection in Health Centers Using the Intuitionistic Fuzzy Cognitive Map (IFCM) Method Optimization of Inventory Controlling System Using Integrated Seasonal forecasting and Integer Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1