一种评估1-3压电复合材料有效系数的分析方法

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Computational Materials Science and Engineering Pub Date : 2021-11-11 DOI:10.1142/s2047684121500263
Sanjeeva Kumar Singh, S. K. Panda
{"title":"一种评估1-3压电复合材料有效系数的分析方法","authors":"Sanjeeva Kumar Singh, S. K. Panda","doi":"10.1142/s2047684121500263","DOIUrl":null,"url":null,"abstract":"In this paper, a micromechanics method is developed to evaluate effective coefficients of piezoelectric fiber-reinforced composites. An exact solution is derived for effective elastic, piezoelectric and dielectric coefficients of such piezocomposites subjected to the applied load in the direction transverse to the fiber orientation. Simultaneously, based on finite element method, a numerical study is performed on a representative volume element of such piezo composite containing fiber in square packing arrangement. The finite element method provides a numerical solution to evaluate effective elastic, piezoelectric and dielectric coefficients for discrete volume fraction of fiber, the range being 0.1–0.6 for this study. The results are interpolated to understand the overall behavior of such piezocomposites. The results obtained from the micromechanics method and the finite element method are compared with the results obtained from other models based on strength of materials method given in the literature. It is observed that the method developed in this study provides better results for effective coefficients susceptible to fiber packing arrangements.","PeriodicalId":45186,"journal":{"name":"International Journal of Computational Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical approach to evaluate effective coefficients of 1–3 piezoelectric composites\",\"authors\":\"Sanjeeva Kumar Singh, S. K. Panda\",\"doi\":\"10.1142/s2047684121500263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a micromechanics method is developed to evaluate effective coefficients of piezoelectric fiber-reinforced composites. An exact solution is derived for effective elastic, piezoelectric and dielectric coefficients of such piezocomposites subjected to the applied load in the direction transverse to the fiber orientation. Simultaneously, based on finite element method, a numerical study is performed on a representative volume element of such piezo composite containing fiber in square packing arrangement. The finite element method provides a numerical solution to evaluate effective elastic, piezoelectric and dielectric coefficients for discrete volume fraction of fiber, the range being 0.1–0.6 for this study. The results are interpolated to understand the overall behavior of such piezocomposites. The results obtained from the micromechanics method and the finite element method are compared with the results obtained from other models based on strength of materials method given in the literature. It is observed that the method developed in this study provides better results for effective coefficients susceptible to fiber packing arrangements.\",\"PeriodicalId\":45186,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2047684121500263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2047684121500263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种评估压电纤维增强复合材料有效系数的微观力学方法。导出了这种压电复合材料在横向于纤维取向的方向上受到施加载荷时的有效弹性系数、压电系数和介电系数的精确解。同时,基于有限元方法,对这种方形填充结构的含纤维压电复合材料的代表性体积单元进行了数值研究。有限元方法提供了一个数值解来评估纤维离散体积分数的有效弹性、压电和介电系数,本研究的范围为0.1-0.6。对结果进行插值,以了解这种压电复合材料的整体行为。将细观力学方法和有限元方法的结果与文献中基于材料强度法的其他模型的结果进行了比较。据观察,本研究中开发的方法为易受纤维填充排列影响的有效系数提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An analytical approach to evaluate effective coefficients of 1–3 piezoelectric composites
In this paper, a micromechanics method is developed to evaluate effective coefficients of piezoelectric fiber-reinforced composites. An exact solution is derived for effective elastic, piezoelectric and dielectric coefficients of such piezocomposites subjected to the applied load in the direction transverse to the fiber orientation. Simultaneously, based on finite element method, a numerical study is performed on a representative volume element of such piezo composite containing fiber in square packing arrangement. The finite element method provides a numerical solution to evaluate effective elastic, piezoelectric and dielectric coefficients for discrete volume fraction of fiber, the range being 0.1–0.6 for this study. The results are interpolated to understand the overall behavior of such piezocomposites. The results obtained from the micromechanics method and the finite element method are compared with the results obtained from other models based on strength of materials method given in the literature. It is observed that the method developed in this study provides better results for effective coefficients susceptible to fiber packing arrangements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
15.40%
发文量
27
期刊最新文献
Gravity driven thin film flow of a third grade fluid on a movable inclined plane with slip boundary condition Insight into the Forced Convective Radiative Stefan flow of Nanofluid over an Unsteady Stretched Sheet Heat Transfer Characteristics in Non-Newtonian Fluids with Variable Thermal Conductivity and Cattaneo-Christov Model: A Spectral Collocation Approach Employing Legendre Wavelets Scheme Elastic, Optoelectronic, and Photocatalytic Characteristics of Semiconducting Cesium Niobium Oxide: First Principles Analysis An isogeometric formulation for free vibration and buckling analyses of FG graphene platelets-reinforced porous beams based on a two-variable shear deformation theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1