多孔岩石中CO2的注入与储存:破坏阈值以下地质力学屈服与渗透率演化的耦合

IF 1.9 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Petroleum Geoscience Pub Date : 2021-09-13 DOI:10.1144/petgeo2020-124
A. Tsopela, A. Bere, M. Dutko, J. Kato, S. Niranjan, Benjamin G. Jennette, S. Hsu, G. Dasari
{"title":"多孔岩石中CO2的注入与储存:破坏阈值以下地质力学屈服与渗透率演化的耦合","authors":"A. Tsopela, A. Bere, M. Dutko, J. Kato, S. Niranjan, Benjamin G. Jennette, S. Hsu, G. Dasari","doi":"10.1144/petgeo2020-124","DOIUrl":null,"url":null,"abstract":"With the increasing demand for CO2 storage in the subsurface, it is important to recognize that candidate formations may present complex stress conditions and material characteristics. Consequently, modelling of CO2 injection requires the selection of the most appropriate constitutive material model for the best possible representation of the material response. The authors focus on modelling the geomechanical behaviour of the reservoir material, coupled with a multiphase flow solution of CO2 injection into a saline-saturated medium. It is proposed that the SR3 critical-state material model is used, which considers a direct link between strength–volume–permeability that evolves during the simulation; furthermore, the material is considered to yield prior to reaching a peak strength in agreement with experimental observations. Verification of the material model against established laboratory tests is conducted, including multiphase flow accounting for relative permeabilities and fluid densities. Multiphase flow coupled to advanced geomechanics provides a holistic approach to modelling CO2 injection into sandstone reservoirs. The resulting injection pressures, CO2 migration extent and patterns, formation dilation, and strength reduction are compared for a range of in situ porosities and incremental material enhancements. This work aims to demonstrate a numerical modelling framework to aid in the understanding of geomechanical responses to CO2 injection for safe and efficient deployment, and is particularly applicable to CO2 sequestration in less favourable aquifers with a relatively low permeability, receiving CO2 from a limited number of injection wells at high flow rates. The proposed framework can also enable additional features to be incorporated into the model such as faults and detailed overburden representation. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"CO2 injection and storage in porous rocks: coupled geomechanical yielding below failure threshold and permeability evolution\",\"authors\":\"A. Tsopela, A. Bere, M. Dutko, J. Kato, S. Niranjan, Benjamin G. Jennette, S. Hsu, G. Dasari\",\"doi\":\"10.1144/petgeo2020-124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing demand for CO2 storage in the subsurface, it is important to recognize that candidate formations may present complex stress conditions and material characteristics. Consequently, modelling of CO2 injection requires the selection of the most appropriate constitutive material model for the best possible representation of the material response. The authors focus on modelling the geomechanical behaviour of the reservoir material, coupled with a multiphase flow solution of CO2 injection into a saline-saturated medium. It is proposed that the SR3 critical-state material model is used, which considers a direct link between strength–volume–permeability that evolves during the simulation; furthermore, the material is considered to yield prior to reaching a peak strength in agreement with experimental observations. Verification of the material model against established laboratory tests is conducted, including multiphase flow accounting for relative permeabilities and fluid densities. Multiphase flow coupled to advanced geomechanics provides a holistic approach to modelling CO2 injection into sandstone reservoirs. The resulting injection pressures, CO2 migration extent and patterns, formation dilation, and strength reduction are compared for a range of in situ porosities and incremental material enhancements. This work aims to demonstrate a numerical modelling framework to aid in the understanding of geomechanical responses to CO2 injection for safe and efficient deployment, and is particularly applicable to CO2 sequestration in less favourable aquifers with a relatively low permeability, receiving CO2 from a limited number of injection wells at high flow rates. The proposed framework can also enable additional features to be incorporated into the model such as faults and detailed overburden representation. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2020-124\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2020-124","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

随着对地下CO2储存需求的增加,重要的是要认识到候选地层可能存在复杂的应力条件和材料特征。因此,CO2注入的建模需要选择最合适的本构材料模型,以尽可能好地表示材料响应。作者专注于对储层材料的地质力学行为进行建模,并将CO2注入含盐饱和介质的多相流溶液。建议使用SR3临界状态材料模型,该模型考虑了在模拟过程中演变的强度-体积-渗透率之间的直接联系;此外,该材料被认为在达到与实验观察一致的峰值强度之前屈服。根据已建立的实验室试验对材料模型进行验证,包括考虑相对渗透率和流体密度的多相流。多相流与先进的地质力学相结合,为砂岩储层CO2注入建模提供了一种整体方法。针对一系列原位孔隙率和增量材料增强,对由此产生的注入压力、CO2迁移程度和模式、地层膨胀和强度降低进行了比较。这项工作旨在展示一个数值建模框架,以帮助理解CO2注入的地质力学响应,从而实现安全高效的部署,特别适用于渗透率相对较低的不太有利含水层中的CO2封存,以高流速从有限数量的注入井接收CO2。所提出的框架还可以将额外的特征纳入模型,例如断层和详细的覆盖层表示。专题收藏:本文是二氧化碳储存地球科学收藏的一部分,可在:https://www.lyellcollection.org/cc/geoscience-for-co2-storage
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO2 injection and storage in porous rocks: coupled geomechanical yielding below failure threshold and permeability evolution
With the increasing demand for CO2 storage in the subsurface, it is important to recognize that candidate formations may present complex stress conditions and material characteristics. Consequently, modelling of CO2 injection requires the selection of the most appropriate constitutive material model for the best possible representation of the material response. The authors focus on modelling the geomechanical behaviour of the reservoir material, coupled with a multiphase flow solution of CO2 injection into a saline-saturated medium. It is proposed that the SR3 critical-state material model is used, which considers a direct link between strength–volume–permeability that evolves during the simulation; furthermore, the material is considered to yield prior to reaching a peak strength in agreement with experimental observations. Verification of the material model against established laboratory tests is conducted, including multiphase flow accounting for relative permeabilities and fluid densities. Multiphase flow coupled to advanced geomechanics provides a holistic approach to modelling CO2 injection into sandstone reservoirs. The resulting injection pressures, CO2 migration extent and patterns, formation dilation, and strength reduction are compared for a range of in situ porosities and incremental material enhancements. This work aims to demonstrate a numerical modelling framework to aid in the understanding of geomechanical responses to CO2 injection for safe and efficient deployment, and is particularly applicable to CO2 sequestration in less favourable aquifers with a relatively low permeability, receiving CO2 from a limited number of injection wells at high flow rates. The proposed framework can also enable additional features to be incorporated into the model such as faults and detailed overburden representation. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Geoscience
Petroleum Geoscience 地学-地球科学综合
CiteScore
4.80
自引率
11.80%
发文量
28
审稿时长
>12 weeks
期刊介绍: Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE). Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership. Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.
期刊最新文献
Research on Water Flooding Front Based on Dynamic and Static Data Inversion—A case study Petroleum source rocks characterisation and depositional environment of Kimmeridgian-Tithonian Sequences, Jaisalmer Basin, Western Rajasthan, India A quantitative study of microstructure of Indian Gondwana shale: a fractal and algebraic topology approach Seismic stratigraphy of the Cretaceous post-rift in Punta del Este Basin (offshore Uruguay) and its implications for deep-water reservoirs Integrated geological and geophysical workflow for structural modelling; case study from the contraction foothills zone of the Colombian Eastern Cordillera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1