L. Hamolli, M. Hafizi, F. De Paolis, Esmeralda Guliqani
{"title":"研究南希·格蕾丝·罗马太空望远镜观测到的引力透镜类星体","authors":"L. Hamolli, M. Hafizi, F. De Paolis, Esmeralda Guliqani","doi":"10.3390/galaxies11030071","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the possibility of observing quasars, particularly lensed quasars, by the Nancy Grace Roman Space Telescope (Roman). To this aim, based on the capabilities of the Roman Space Telescope and the results from the quasar luminosity function (QLF) in the infrared band of the Spitzer Space Telescope imaging survey, we calculated the number of quasars expected to be in its field of view. In order to estimate the number of lensed quasars, we develop a Monte Carlo simulation to estimate the probability that a quasar is lensed once or more times by foreground galaxies. Using the mass–luminosity distribution function of galaxies and the redshift distributions of galaxies and quasars, we find that 1 per 180 observed quasars will be lensed by foreground galaxies. Further on, adopting a singular isothermal sphere (SIS) model for lens galaxies, we calculate the time delay between lensed images for single and multiple lensing systems and present their distributions. We emphasize that detailed studies of these lensing systems will provide a powerful probe of the physical properties of quasars and may allow testing the mass distribution models of galaxies in addition to being extremely helpful for constraining the cosmological parameters.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope\",\"authors\":\"L. Hamolli, M. Hafizi, F. De Paolis, Esmeralda Guliqani\",\"doi\":\"10.3390/galaxies11030071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the possibility of observing quasars, particularly lensed quasars, by the Nancy Grace Roman Space Telescope (Roman). To this aim, based on the capabilities of the Roman Space Telescope and the results from the quasar luminosity function (QLF) in the infrared band of the Spitzer Space Telescope imaging survey, we calculated the number of quasars expected to be in its field of view. In order to estimate the number of lensed quasars, we develop a Monte Carlo simulation to estimate the probability that a quasar is lensed once or more times by foreground galaxies. Using the mass–luminosity distribution function of galaxies and the redshift distributions of galaxies and quasars, we find that 1 per 180 observed quasars will be lensed by foreground galaxies. Further on, adopting a singular isothermal sphere (SIS) model for lens galaxies, we calculate the time delay between lensed images for single and multiple lensing systems and present their distributions. We emphasize that detailed studies of these lensing systems will provide a powerful probe of the physical properties of quasars and may allow testing the mass distribution models of galaxies in addition to being extremely helpful for constraining the cosmological parameters.\",\"PeriodicalId\":37570,\"journal\":{\"name\":\"Galaxies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/galaxies11030071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/galaxies11030071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope
In this work, we investigate the possibility of observing quasars, particularly lensed quasars, by the Nancy Grace Roman Space Telescope (Roman). To this aim, based on the capabilities of the Roman Space Telescope and the results from the quasar luminosity function (QLF) in the infrared band of the Spitzer Space Telescope imaging survey, we calculated the number of quasars expected to be in its field of view. In order to estimate the number of lensed quasars, we develop a Monte Carlo simulation to estimate the probability that a quasar is lensed once or more times by foreground galaxies. Using the mass–luminosity distribution function of galaxies and the redshift distributions of galaxies and quasars, we find that 1 per 180 observed quasars will be lensed by foreground galaxies. Further on, adopting a singular isothermal sphere (SIS) model for lens galaxies, we calculate the time delay between lensed images for single and multiple lensing systems and present their distributions. We emphasize that detailed studies of these lensing systems will provide a powerful probe of the physical properties of quasars and may allow testing the mass distribution models of galaxies in addition to being extremely helpful for constraining the cosmological parameters.
GalaxiesPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
4.90
自引率
12.00%
发文量
100
审稿时长
11 weeks
期刊介绍:
Es una revista internacional de acceso abierto revisada por pares que proporciona un foro avanzado para estudios relacionados con astronomía, astrofísica y cosmología. Areas temáticas Astronomía Astrofísica Cosmología Astronomía observacional: radio, infrarrojo, óptico, rayos X, neutrino, etc. Ciencia planetaria Equipos y tecnologías de astronomía. Ingeniería Aeroespacial Análisis de datos astronómicos. Astroquímica y Astrobiología. Arqueoastronomía Historia de la astronomía y cosmología. Problemas filosóficos en cosmología.