稻壳基介孔TiO2-SBA-15纳米复合材料光催化降解亚甲基蓝及抗菌活性研究

IF 2.8 4区 工程技术 Q2 CHEMISTRY, APPLIED Adsorption Science & Technology Pub Date : 2021-09-19 DOI:10.1155/2021/9290644
E. Alosaimi, I. Alsohaimi, T. Dahan, Qiao Chen, Ayman A. O. Younes, B. El-Gammal, S. Melhi
{"title":"稻壳基介孔TiO2-SBA-15纳米复合材料光催化降解亚甲基蓝及抗菌活性研究","authors":"E. Alosaimi, I. Alsohaimi, T. Dahan, Qiao Chen, Ayman A. O. Younes, B. El-Gammal, S. Melhi","doi":"10.1155/2021/9290644","DOIUrl":null,"url":null,"abstract":"Concerns have been increased regarding the existence of pollutants in environmental water resources and their risks to the ecosystem and human society. TiO2 photocatalyst is considered as an effective photocatalyst to remove the pollutants. Herein, the mesoporous TiO2-SBA-15 was prepared using the rice husk extract as the silica source. The fabricated nanocomposites were characterized using FTIR, small and wide angle XRD, Raman spectroscopy, UV-vis, BET surface area analysis, and HRTEM. The photocatalytic efficiency of the composites for the degradation of methylene blue (MB) has been evaluated under UV irradiation. Interestingly, due to the excellent dispersion of TiO2 on the wall of SBA-15 and good hydrophilicity, the nanocomposites displayed a good catalytic activity. The higher photodegradation performance was achieved by the composite containing 10 wt% TiO2 by which the MB was fully degraded within 15-20 min of irradiation. Besides, TiO2-SBA-15 could effectively inhibit the growth of Gram-positive and Gram-negative bacteria. These results offer a practical and economic approach in the environmental management industries.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Photocatalytic Degradation of Methylene Blue and Antibacterial Activity of Mesoporous TiO2-SBA-15 Nanocomposite Based on Rice Husk\",\"authors\":\"E. Alosaimi, I. Alsohaimi, T. Dahan, Qiao Chen, Ayman A. O. Younes, B. El-Gammal, S. Melhi\",\"doi\":\"10.1155/2021/9290644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concerns have been increased regarding the existence of pollutants in environmental water resources and their risks to the ecosystem and human society. TiO2 photocatalyst is considered as an effective photocatalyst to remove the pollutants. Herein, the mesoporous TiO2-SBA-15 was prepared using the rice husk extract as the silica source. The fabricated nanocomposites were characterized using FTIR, small and wide angle XRD, Raman spectroscopy, UV-vis, BET surface area analysis, and HRTEM. The photocatalytic efficiency of the composites for the degradation of methylene blue (MB) has been evaluated under UV irradiation. Interestingly, due to the excellent dispersion of TiO2 on the wall of SBA-15 and good hydrophilicity, the nanocomposites displayed a good catalytic activity. The higher photodegradation performance was achieved by the composite containing 10 wt% TiO2 by which the MB was fully degraded within 15-20 min of irradiation. Besides, TiO2-SBA-15 could effectively inhibit the growth of Gram-positive and Gram-negative bacteria. These results offer a practical and economic approach in the environmental management industries.\",\"PeriodicalId\":7315,\"journal\":{\"name\":\"Adsorption Science & Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9290644\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2021/9290644","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

环境水资源中污染物的存在及其对生态系统和人类社会的危害日益引起人们的关注。TiO2光催化剂被认为是一种去除污染物的有效光催化剂。本文以稻壳提取物为硅源,制备了介孔TiO2-SBA-15。采用红外光谱(FTIR)、小角和广角XRD、拉曼光谱、紫外可见光谱(UV-vis)、BET表面积分析和HRTEM等手段对制备的纳米复合材料进行了表征。研究了复合材料在紫外光照射下降解亚甲基蓝的光催化效率。有趣的是,由于TiO2在SBA-15壁上的良好分散性和良好的亲水性,纳米复合材料表现出良好的催化活性。含有10 wt% TiO2的复合材料具有较高的光降解性能,在15-20分钟的照射下,MB被完全降解。此外,TiO2-SBA-15能有效抑制革兰氏阳性菌和革兰氏阴性菌的生长。这些结果为环境管理行业提供了一种实用而经济的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic Degradation of Methylene Blue and Antibacterial Activity of Mesoporous TiO2-SBA-15 Nanocomposite Based on Rice Husk
Concerns have been increased regarding the existence of pollutants in environmental water resources and their risks to the ecosystem and human society. TiO2 photocatalyst is considered as an effective photocatalyst to remove the pollutants. Herein, the mesoporous TiO2-SBA-15 was prepared using the rice husk extract as the silica source. The fabricated nanocomposites were characterized using FTIR, small and wide angle XRD, Raman spectroscopy, UV-vis, BET surface area analysis, and HRTEM. The photocatalytic efficiency of the composites for the degradation of methylene blue (MB) has been evaluated under UV irradiation. Interestingly, due to the excellent dispersion of TiO2 on the wall of SBA-15 and good hydrophilicity, the nanocomposites displayed a good catalytic activity. The higher photodegradation performance was achieved by the composite containing 10 wt% TiO2 by which the MB was fully degraded within 15-20 min of irradiation. Besides, TiO2-SBA-15 could effectively inhibit the growth of Gram-positive and Gram-negative bacteria. These results offer a practical and economic approach in the environmental management industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption Science & Technology
Adsorption Science & Technology 工程技术-工程:化工
CiteScore
5.00
自引率
10.30%
发文量
181
审稿时长
4.5 months
期刊介绍: Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.
期刊最新文献
Partial Purification of Anthocyanins (Brassica oleracea var. Rubra) from Purple Cabbage Using Natural and Modified Clays as Adsorbent Removal of Pb(II) from Aqueous Solutions with Manganese Oxide-Modified Diatomite Dual Role of Fe2+ in the Galena Flotation and Influence on Selective Separation Investigation of the Zeta Adsorption Model and Gas-Solid Adsorption Phase Transition Mechanism Using Statistical Mechanics at Gas-Solid Interfaces Sulphuric Acid-Modified Coal Fly Ash for the Removal of Rhodamine B Dye from Water Environment: Isotherm, Kinetics, and Thermodynamic Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1