Jelena Toropitsyna, L. Jelínek, Ross Wilson, M. Paidar
{"title":"酸性矿山废水中瞬态金属离子的选择性去除及电解回收金属铜的可能性","authors":"Jelena Toropitsyna, L. Jelínek, Ross Wilson, M. Paidar","doi":"10.1080/07366299.2023.2181090","DOIUrl":null,"url":null,"abstract":"ABSTRACT The low pH and high salinity of acid mine drainage (AMD) fundamentally complicates the sorption processes. We explored the selective removal of Cu, Ni and Co ions present in AMD from the excess of ferrous ions of using a chelating resins Lewatit® MonoPlus TP 220 and Lewatit® TP 208. Also, the recovery of metal copper from desorption solution using electrolysis was investigated. The results showed that the most effective sorption of metal ions was achieved with chelating sorbent Lewatit® TP 220. The dynamic capacity of the sorbent under the given conditions (pH= 2.5 ± 0.03, presence of Fe(II/III), Zn(II), Mn(II)) decreased in the following order: Cu(II) (43.3 ± 1.4 g/L) > Ni(II) (22.1 ± 2.1 g/L) > Co(II) (3.6 ± 0.4 g/L). Chelating resin Lewatit® TP 208 under the same conditions showed lower efficiency: Cu(II) (30.6 ± 1.3 g/L) > Ni(II) (9.1 ± 0.17 g/L) > Co(II) (1.3 ± 0.08 g/L). The weak base anion exchanger Purolite® A 832 was successfully used to take up Cu(II) from ammonia solution and easily regenerated with sulfuric acid. The sorption capacity for Cu(II) was calculated to be 19.2 ± 0.5 g/L. Electrolysis experiments were performed with a fluidized bed electrolysis reactor where metallic copper was regenerated from desorption solutions and purified sulfuric acid solutions were obtained. GRAPHICAL ABSTRACT","PeriodicalId":22002,"journal":{"name":"Solvent Extraction and Ion Exchange","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Selective Removal of Transient Metal Ions from Acid Mine Drainage and the Possibility of Metallic Copper Recovery with Electrolysis\",\"authors\":\"Jelena Toropitsyna, L. Jelínek, Ross Wilson, M. Paidar\",\"doi\":\"10.1080/07366299.2023.2181090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The low pH and high salinity of acid mine drainage (AMD) fundamentally complicates the sorption processes. We explored the selective removal of Cu, Ni and Co ions present in AMD from the excess of ferrous ions of using a chelating resins Lewatit® MonoPlus TP 220 and Lewatit® TP 208. Also, the recovery of metal copper from desorption solution using electrolysis was investigated. The results showed that the most effective sorption of metal ions was achieved with chelating sorbent Lewatit® TP 220. The dynamic capacity of the sorbent under the given conditions (pH= 2.5 ± 0.03, presence of Fe(II/III), Zn(II), Mn(II)) decreased in the following order: Cu(II) (43.3 ± 1.4 g/L) > Ni(II) (22.1 ± 2.1 g/L) > Co(II) (3.6 ± 0.4 g/L). Chelating resin Lewatit® TP 208 under the same conditions showed lower efficiency: Cu(II) (30.6 ± 1.3 g/L) > Ni(II) (9.1 ± 0.17 g/L) > Co(II) (1.3 ± 0.08 g/L). The weak base anion exchanger Purolite® A 832 was successfully used to take up Cu(II) from ammonia solution and easily regenerated with sulfuric acid. The sorption capacity for Cu(II) was calculated to be 19.2 ± 0.5 g/L. Electrolysis experiments were performed with a fluidized bed electrolysis reactor where metallic copper was regenerated from desorption solutions and purified sulfuric acid solutions were obtained. GRAPHICAL ABSTRACT\",\"PeriodicalId\":22002,\"journal\":{\"name\":\"Solvent Extraction and Ion Exchange\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solvent Extraction and Ion Exchange\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/07366299.2023.2181090\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction and Ion Exchange","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/07366299.2023.2181090","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Selective Removal of Transient Metal Ions from Acid Mine Drainage and the Possibility of Metallic Copper Recovery with Electrolysis
ABSTRACT The low pH and high salinity of acid mine drainage (AMD) fundamentally complicates the sorption processes. We explored the selective removal of Cu, Ni and Co ions present in AMD from the excess of ferrous ions of using a chelating resins Lewatit® MonoPlus TP 220 and Lewatit® TP 208. Also, the recovery of metal copper from desorption solution using electrolysis was investigated. The results showed that the most effective sorption of metal ions was achieved with chelating sorbent Lewatit® TP 220. The dynamic capacity of the sorbent under the given conditions (pH= 2.5 ± 0.03, presence of Fe(II/III), Zn(II), Mn(II)) decreased in the following order: Cu(II) (43.3 ± 1.4 g/L) > Ni(II) (22.1 ± 2.1 g/L) > Co(II) (3.6 ± 0.4 g/L). Chelating resin Lewatit® TP 208 under the same conditions showed lower efficiency: Cu(II) (30.6 ± 1.3 g/L) > Ni(II) (9.1 ± 0.17 g/L) > Co(II) (1.3 ± 0.08 g/L). The weak base anion exchanger Purolite® A 832 was successfully used to take up Cu(II) from ammonia solution and easily regenerated with sulfuric acid. The sorption capacity for Cu(II) was calculated to be 19.2 ± 0.5 g/L. Electrolysis experiments were performed with a fluidized bed electrolysis reactor where metallic copper was regenerated from desorption solutions and purified sulfuric acid solutions were obtained. GRAPHICAL ABSTRACT
期刊介绍:
Solvent Extraction and Ion Exchange is an international journal that publishes original research papers, reviews, and notes that address all aspects of solvent extraction, ion exchange, and closely related methods involving, for example, liquid membranes, extraction chromatography, supercritical fluids, ionic liquids, microfluidics, and adsorption. We welcome submissions that look at: The underlying principles in solvent extraction and ion exchange; Solvent extraction and ion exchange process development; New materials or reagents, their syntheses and properties; Computational methods of molecular design and simulation; Advances in equipment, fluid dynamics, and engineering; Interfacial phenomena, kinetics, and coalescence; Spectroscopic and diffraction analysis of structure and dynamics; Host-guest chemistry, ion receptors, and molecular recognition.