Zhihua Huang, An Zhang, G. Dósa, Yong Chen, Chenling Xiong
{"title":"带冲突装箱的改进逼近算法","authors":"Zhihua Huang, An Zhang, G. Dósa, Yong Chen, Chenling Xiong","doi":"10.1142/s0129054122460054","DOIUrl":null,"url":null,"abstract":"Given a set of items, and a conflict graph defined on the item set, the problem of bin packing with conflicts asks for a partition of items into a minimum number of independent sets so that the total size of items in each independent set does not exceed the bin capacity. As a generalization of both classic bin packing and classic vertex coloring, it is hard to approximate the problem on general graphs. We present new approximation algorithms for bipartite graphs and split graphs. The absolute approximation ratios are shown to be [Formula: see text] and [Formula: see text] respectively, both improving the existing results.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Approximation Algorithms for Bin Packing with Conflicts\",\"authors\":\"Zhihua Huang, An Zhang, G. Dósa, Yong Chen, Chenling Xiong\",\"doi\":\"10.1142/s0129054122460054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of items, and a conflict graph defined on the item set, the problem of bin packing with conflicts asks for a partition of items into a minimum number of independent sets so that the total size of items in each independent set does not exceed the bin capacity. As a generalization of both classic bin packing and classic vertex coloring, it is hard to approximate the problem on general graphs. We present new approximation algorithms for bipartite graphs and split graphs. The absolute approximation ratios are shown to be [Formula: see text] and [Formula: see text] respectively, both improving the existing results.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054122460054\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054122460054","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Improved Approximation Algorithms for Bin Packing with Conflicts
Given a set of items, and a conflict graph defined on the item set, the problem of bin packing with conflicts asks for a partition of items into a minimum number of independent sets so that the total size of items in each independent set does not exceed the bin capacity. As a generalization of both classic bin packing and classic vertex coloring, it is hard to approximate the problem on general graphs. We present new approximation algorithms for bipartite graphs and split graphs. The absolute approximation ratios are shown to be [Formula: see text] and [Formula: see text] respectively, both improving the existing results.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing