基于动态神经网络的无模型非线性系统在线自适应最优跟踪控制

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Automatika Pub Date : 2023-02-13 DOI:10.1080/00051144.2023.2170058
Yuming Yin, Z. Fu, Yan Lu
{"title":"基于动态神经网络的无模型非线性系统在线自适应最优跟踪控制","authors":"Yuming Yin, Z. Fu, Yan Lu","doi":"10.1080/00051144.2023.2170058","DOIUrl":null,"url":null,"abstract":"This paper presents an online adaptive approximate solution for the optimal tracking control problem of model-free nonlinear systems. Firstly, a dynamic neural network identifier with properly designed weights updating laws is developed to identify the unknown dynamics. Then an adaptive optimal tracking control policy consisting of two terms is proposed, i.e. a steady-state control term is established to ensure the desired tracking performance at the steady state, and an optimal control term is proposed to ensure the optimal tracking error dynamics optimally. The composite Lyapunov method is used to analyse the stability of the closed-loop system. Two simulation examples are presented to demonstrate the effectiveness of the proposed method.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"64 1","pages":"431 - 440"},"PeriodicalIF":1.7000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online adaptive optimal tracking control for model-free nonlinear systems via a dynamic neural network\",\"authors\":\"Yuming Yin, Z. Fu, Yan Lu\",\"doi\":\"10.1080/00051144.2023.2170058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an online adaptive approximate solution for the optimal tracking control problem of model-free nonlinear systems. Firstly, a dynamic neural network identifier with properly designed weights updating laws is developed to identify the unknown dynamics. Then an adaptive optimal tracking control policy consisting of two terms is proposed, i.e. a steady-state control term is established to ensure the desired tracking performance at the steady state, and an optimal control term is proposed to ensure the optimal tracking error dynamics optimally. The composite Lyapunov method is used to analyse the stability of the closed-loop system. Two simulation examples are presented to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\"64 1\",\"pages\":\"431 - 440\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2170058\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2170058","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

针对无模型非线性系统的最优跟踪控制问题,提出了一种在线自适应近似解。首先,开发了一个具有适当设计的权值更新律的动态神经网络辨识器来识别未知动力学。然后提出了一种由两项组成的自适应最优跟踪控制策略,即建立稳态控制项以确保在稳态下的期望跟踪性能,并提出最优控制项以最优地确保最优跟踪误差动力学。采用复合李雅普诺夫方法分析了闭环系统的稳定性。通过两个仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online adaptive optimal tracking control for model-free nonlinear systems via a dynamic neural network
This paper presents an online adaptive approximate solution for the optimal tracking control problem of model-free nonlinear systems. Firstly, a dynamic neural network identifier with properly designed weights updating laws is developed to identify the unknown dynamics. Then an adaptive optimal tracking control policy consisting of two terms is proposed, i.e. a steady-state control term is established to ensure the desired tracking performance at the steady state, and an optimal control term is proposed to ensure the optimal tracking error dynamics optimally. The composite Lyapunov method is used to analyse the stability of the closed-loop system. Two simulation examples are presented to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
期刊最新文献
Robust synchronization of four-dimensional chaotic finance systems with unknown parametric uncertainties Segmenting and classifying skin lesions using a fruit fly optimization algorithm with a machine learning framework An implementation of inertia control strategy for grid-connected solar system using moth-flame optimization algorithm Empowering diagnosis: an astonishing deep transfer learning approach with fine tuning for precise lung disease classification from CXR images A comparative analysis: optimal node selection in large data block transmission in VANET using various node relay optimization algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1