昆虫识别的图像处理技术和深度学习技术研究

V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar
{"title":"昆虫识别的图像处理技术和深度学习技术研究","authors":"V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar","doi":"10.33640/2405-609x.3289","DOIUrl":null,"url":null,"abstract":"Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on image processing techniques and deep learning techniques for insect identification\",\"authors\":\"V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar\",\"doi\":\"10.33640/2405-609x.3289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.\",\"PeriodicalId\":17782,\"journal\":{\"name\":\"Karbala International Journal of Modern Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Karbala International Journal of Modern Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33640/2405-609x.3289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karbala International Journal of Modern Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33640/2405-609x.3289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要昆虫和疾病的自动识别在过去几年里吸引了研究人员。研究人员提出了几种算法来解决手动识别昆虫和害虫的问题。图像处理技术和深度卷积神经网络可以克服人工昆虫识别和分类的挑战。这项工作的重点是优化和评估用于昆虫识别的深度卷积神经网络。AlexNet、MobileNetv2、ResNet-50、ResNet-101、GoogleNet、InceptionV3、SqueezeNet、ShuffleNet、DenseNet201、VGG-16和VGG-19是在三个不同数据集上评估的架构。在我们的实验中,DenseNet 201以最高的测试精度表现良好。关于训练时间,AlexNet表现良好,但ShuffleNet、SqueezeNet和MobileNet是小型架构的更好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on image processing techniques and deep learning techniques for insect identification
Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Karbala International Journal of Modern Science
Karbala International Journal of Modern Science Multidisciplinary-Multidisciplinary
CiteScore
2.50
自引率
0.00%
发文量
54
期刊最新文献
Freedom as the Physical Notion. Mechanics of a Material Point Enhanced optoelectronics performance of hybrid self power photodetectors GO: TiO2- AD / n-Si heterojunctions The Potential Influence of Immune Modulatory Molecules (TGF-βIII and CTLA-4) in Pathogenicity of PCOS Heterogeneous Resources in Infrastructures of the Edge Network Paradigm: A Comprehensive Review Classification and removal of hazy images based on a transmission fusion strategy using the Alexnet network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1