Chao Xiang, Li Zhang, Xiaopo Xie, Longgang Zhao, Xin Ke, Zhendong Niu, Feng Wang
{"title":"用于盲点预警的协同车辆基础设施系统中的多传感器融合算法","authors":"Chao Xiang, Li Zhang, Xiaopo Xie, Longgang Zhao, Xin Ke, Zhendong Niu, Feng Wang","doi":"10.1177/15501329221100412","DOIUrl":null,"url":null,"abstract":"With the rapid development of electric vehicles and artificial intelligence technology, the automatic driving industry has entered a rapid development stage. However, there is a risk of traffic accidents due to the blind spot of vision, whether autonomous vehicles or traditional vehicles. In this article, a multi-sensor fusion perception method is proposed, in which the semantic information from the camera and the range information from the LiDAR are fused at the data layer and the LiDAR point cloud containing semantic information is clustered to obtain the type and location information of the objects. Based on the sensor equipments deployed on the roadside, the sensing information processed by the fusion method is sent to the nearby vehicles in real-time through 5G and V2X technology for blind spot early warning, and its feasibility is verified by experiments and simulations. The blind spot warning scheme based on roadside multi-sensor fusion perception proposed in this article has been experimentally verified in the closed park, which can obviously reduce the traffic accidents caused by the blind spot of vision, and is of great significance to improve traffic safety.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-sensor fusion algorithm in cooperative vehicle-infrastructure system for blind spot warning\",\"authors\":\"Chao Xiang, Li Zhang, Xiaopo Xie, Longgang Zhao, Xin Ke, Zhendong Niu, Feng Wang\",\"doi\":\"10.1177/15501329221100412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of electric vehicles and artificial intelligence technology, the automatic driving industry has entered a rapid development stage. However, there is a risk of traffic accidents due to the blind spot of vision, whether autonomous vehicles or traditional vehicles. In this article, a multi-sensor fusion perception method is proposed, in which the semantic information from the camera and the range information from the LiDAR are fused at the data layer and the LiDAR point cloud containing semantic information is clustered to obtain the type and location information of the objects. Based on the sensor equipments deployed on the roadside, the sensing information processed by the fusion method is sent to the nearby vehicles in real-time through 5G and V2X technology for blind spot early warning, and its feasibility is verified by experiments and simulations. The blind spot warning scheme based on roadside multi-sensor fusion perception proposed in this article has been experimentally verified in the closed park, which can obviously reduce the traffic accidents caused by the blind spot of vision, and is of great significance to improve traffic safety.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221100412\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221100412","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-sensor fusion algorithm in cooperative vehicle-infrastructure system for blind spot warning
With the rapid development of electric vehicles and artificial intelligence technology, the automatic driving industry has entered a rapid development stage. However, there is a risk of traffic accidents due to the blind spot of vision, whether autonomous vehicles or traditional vehicles. In this article, a multi-sensor fusion perception method is proposed, in which the semantic information from the camera and the range information from the LiDAR are fused at the data layer and the LiDAR point cloud containing semantic information is clustered to obtain the type and location information of the objects. Based on the sensor equipments deployed on the roadside, the sensing information processed by the fusion method is sent to the nearby vehicles in real-time through 5G and V2X technology for blind spot early warning, and its feasibility is verified by experiments and simulations. The blind spot warning scheme based on roadside multi-sensor fusion perception proposed in this article has been experimentally verified in the closed park, which can obviously reduce the traffic accidents caused by the blind spot of vision, and is of great significance to improve traffic safety.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.