Zhaopeng Yu, Z. Zhao, Xuling Wei, Peng-Fei Yan, Ruofan Liu, Y. Jin, Guangbi Gong, Xinghang Xu, Yibo Wu
{"title":"一步聚合法制备氯化聚异丁烯弹性体及其性能","authors":"Zhaopeng Yu, Z. Zhao, Xuling Wei, Peng-Fei Yan, Ruofan Liu, Y. Jin, Guangbi Gong, Xinghang Xu, Yibo Wu","doi":"10.5254/rct.23.77969","DOIUrl":null,"url":null,"abstract":"\n Cationic copolymerization of isobutylene and chlorostyrene was investigated using the Lewis acid initiator system. Titanium (IV) chloride (TiCl4) and ethylaluminum sesquichloride (AlEt1.5Cl1.5) were used as the co-initiators, and 2-chloro-2,4,4-trimethylpentane (TMPCl) and H2O were used as the main initiators. The influences of monomer feeding ratio and reaction time were studied. The reaction mechanism was proposed by studying the reaction kinetics. It was found that when p-chloromethylstyrene (p-ClMSt) was used, benzyl chloride was easily involved in the initiation reaction stage, leading to the formation of branched polymer. When p-chlorostyrene (p-ClSt) was used as a co-monomer, living copolymerization was achieved and no branching structure formed. Isobutylene, isoprene, and p-ClSt were synthesized with the AlEt1.5Cl1.5 initiator system. The high-molecular-weight halogenated ternary copolymer was successfully prepared by one-step polymerization. Vulcanization and mechanical property studies were also performed.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREPARATION AND PROPERTIES OF CHLORINATED POLYISOBUTYLENE ELASTOMER BY ONE-STEP POLYMERIZATION\",\"authors\":\"Zhaopeng Yu, Z. Zhao, Xuling Wei, Peng-Fei Yan, Ruofan Liu, Y. Jin, Guangbi Gong, Xinghang Xu, Yibo Wu\",\"doi\":\"10.5254/rct.23.77969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cationic copolymerization of isobutylene and chlorostyrene was investigated using the Lewis acid initiator system. Titanium (IV) chloride (TiCl4) and ethylaluminum sesquichloride (AlEt1.5Cl1.5) were used as the co-initiators, and 2-chloro-2,4,4-trimethylpentane (TMPCl) and H2O were used as the main initiators. The influences of monomer feeding ratio and reaction time were studied. The reaction mechanism was proposed by studying the reaction kinetics. It was found that when p-chloromethylstyrene (p-ClMSt) was used, benzyl chloride was easily involved in the initiation reaction stage, leading to the formation of branched polymer. When p-chlorostyrene (p-ClSt) was used as a co-monomer, living copolymerization was achieved and no branching structure formed. Isobutylene, isoprene, and p-ClSt were synthesized with the AlEt1.5Cl1.5 initiator system. The high-molecular-weight halogenated ternary copolymer was successfully prepared by one-step polymerization. Vulcanization and mechanical property studies were also performed.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5254/rct.23.77969\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.23.77969","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
PREPARATION AND PROPERTIES OF CHLORINATED POLYISOBUTYLENE ELASTOMER BY ONE-STEP POLYMERIZATION
Cationic copolymerization of isobutylene and chlorostyrene was investigated using the Lewis acid initiator system. Titanium (IV) chloride (TiCl4) and ethylaluminum sesquichloride (AlEt1.5Cl1.5) were used as the co-initiators, and 2-chloro-2,4,4-trimethylpentane (TMPCl) and H2O were used as the main initiators. The influences of monomer feeding ratio and reaction time were studied. The reaction mechanism was proposed by studying the reaction kinetics. It was found that when p-chloromethylstyrene (p-ClMSt) was used, benzyl chloride was easily involved in the initiation reaction stage, leading to the formation of branched polymer. When p-chlorostyrene (p-ClSt) was used as a co-monomer, living copolymerization was achieved and no branching structure formed. Isobutylene, isoprene, and p-ClSt were synthesized with the AlEt1.5Cl1.5 initiator system. The high-molecular-weight halogenated ternary copolymer was successfully prepared by one-step polymerization. Vulcanization and mechanical property studies were also performed.
期刊介绍:
The scope of RC&T covers:
-Chemistry and Properties-
Mechanics-
Materials Science-
Nanocomposites-
Biotechnology-
Rubber Recycling-
Green Technology-
Characterization and Simulation.
Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.