双金属硫化钴铁和磷化物作为整体水分解和超级电容器的高效电极材料

IF 4.703 3区 材料科学 Nanoscale Research Letters Pub Date : 2023-04-04 DOI:10.1186/s11671-023-03837-1
Shiva Bhardwaj, Rishabh Srivastava, Teddy Mageto, Mahesh Chaudhari, Anuj Kumar, Jolaikha Sultana, Sanjay R. Mishra, Felio Perez, Ram K. Gupta
{"title":"双金属硫化钴铁和磷化物作为整体水分解和超级电容器的高效电极材料","authors":"Shiva Bhardwaj,&nbsp;Rishabh Srivastava,&nbsp;Teddy Mageto,&nbsp;Mahesh Chaudhari,&nbsp;Anuj Kumar,&nbsp;Jolaikha Sultana,&nbsp;Sanjay R. Mishra,&nbsp;Felio Perez,&nbsp;Ram K. Gupta","doi":"10.1186/s11671-023-03837-1","DOIUrl":null,"url":null,"abstract":"<div><p>The major center of attraction in renewable energy technology is the designing of an efficient material for both electrocatalytic and supercapacitor (SC) applications. Herein, we report the simple hydrothermal method to synthesize cobalt-iron-based nanocomposites followed by sulfurization and phosphorization. The crystallinity of nanocomposites has been confirmed using X-ray diffraction, where crystalline nature improves from as-prepared to sulfurized to phosphorized. The as-synthesized CoFe-nanocomposite requires 263 mV overpotential for oxygen evolution reaction (OER) to reach a current density of 10 mA/cm<sup>2</sup> whereas the phosphorized requires 240 mV to reach 10 mA/cm<sup>2</sup>. The hydrogen evolution reaction (HER) for CoFe-nanocomposite exhibits 208 mV overpotential at 10 mA/cm<sup>2</sup>. Moreover, the results improved after phosphorization showing 186 mV to reach 10 mA/cm<sup>2</sup>. The specific capacitance (C<sub>sp</sub>) of as-synthesized nanocomposite is 120 F/g at 1 A/g, along with a power density of 3752 W/kg and a maximum energy density of 4.3 Wh/kg. Furthermore, the phosphorized nanocomposite shows the best performance by exhibiting 252 F/g at 1 A/g and the highest power and energy density of 4.2 kW/kg and 10.1 Wh/kg. This shows that the results get improved more than twice. The 97% capacitance retention after 5000 cycles shows cyclic stability of phosphorized CoFe. Our research thus offers cost-effective and highly efficient material for energy production and storage applications.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03837-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Bimetallic Co–Fe sulfide and phosphide as efficient electrode materials for overall water splitting and supercapacitor\",\"authors\":\"Shiva Bhardwaj,&nbsp;Rishabh Srivastava,&nbsp;Teddy Mageto,&nbsp;Mahesh Chaudhari,&nbsp;Anuj Kumar,&nbsp;Jolaikha Sultana,&nbsp;Sanjay R. Mishra,&nbsp;Felio Perez,&nbsp;Ram K. Gupta\",\"doi\":\"10.1186/s11671-023-03837-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The major center of attraction in renewable energy technology is the designing of an efficient material for both electrocatalytic and supercapacitor (SC) applications. Herein, we report the simple hydrothermal method to synthesize cobalt-iron-based nanocomposites followed by sulfurization and phosphorization. The crystallinity of nanocomposites has been confirmed using X-ray diffraction, where crystalline nature improves from as-prepared to sulfurized to phosphorized. The as-synthesized CoFe-nanocomposite requires 263 mV overpotential for oxygen evolution reaction (OER) to reach a current density of 10 mA/cm<sup>2</sup> whereas the phosphorized requires 240 mV to reach 10 mA/cm<sup>2</sup>. The hydrogen evolution reaction (HER) for CoFe-nanocomposite exhibits 208 mV overpotential at 10 mA/cm<sup>2</sup>. Moreover, the results improved after phosphorization showing 186 mV to reach 10 mA/cm<sup>2</sup>. The specific capacitance (C<sub>sp</sub>) of as-synthesized nanocomposite is 120 F/g at 1 A/g, along with a power density of 3752 W/kg and a maximum energy density of 4.3 Wh/kg. Furthermore, the phosphorized nanocomposite shows the best performance by exhibiting 252 F/g at 1 A/g and the highest power and energy density of 4.2 kW/kg and 10.1 Wh/kg. This shows that the results get improved more than twice. The 97% capacitance retention after 5000 cycles shows cyclic stability of phosphorized CoFe. Our research thus offers cost-effective and highly efficient material for energy production and storage applications.</p></div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-023-03837-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-023-03837-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03837-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源技术的主要吸引力是设计一种高效的材料,用于电催化和超级电容器(SC)的应用。在此,我们报道了简单的水热法合成钴铁基纳米复合材料,然后进行硫化和磷酸化。利用x射线衍射证实了纳米复合材料的结晶度,其中晶体性质从制备到硫化再到磷化有所改善。合成的咖啡-纳米复合材料需要263 mV过电位才能达到10 mA/cm2的析氧反应(OER)电流密度,而磷酸化的咖啡-纳米复合材料需要240 mV过电位才能达到10 mA/cm2。咖啡纳米复合材料的析氢反应(HER)在10 mA/cm2时表现出208 mV的过电位。磷化后的结果有所改善,从186 mV达到10 mA/cm2。合成的纳米复合材料在1 A/g下的比电容(Csp)为120 F/g,功率密度为3752 W/kg,最大能量密度为4.3 Wh/kg。此外,磷化纳米复合材料在1 A/g时表现出252 F/g的最高功率和能量密度,分别为4.2 kW/kg和10.1 Wh/kg。这表明,结果得到了两倍以上的改进。5000次循环后97%的电容保持率表明了磷化铁的循环稳定性。因此,我们的研究为能源生产和储存应用提供了经济高效的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bimetallic Co–Fe sulfide and phosphide as efficient electrode materials for overall water splitting and supercapacitor

The major center of attraction in renewable energy technology is the designing of an efficient material for both electrocatalytic and supercapacitor (SC) applications. Herein, we report the simple hydrothermal method to synthesize cobalt-iron-based nanocomposites followed by sulfurization and phosphorization. The crystallinity of nanocomposites has been confirmed using X-ray diffraction, where crystalline nature improves from as-prepared to sulfurized to phosphorized. The as-synthesized CoFe-nanocomposite requires 263 mV overpotential for oxygen evolution reaction (OER) to reach a current density of 10 mA/cm2 whereas the phosphorized requires 240 mV to reach 10 mA/cm2. The hydrogen evolution reaction (HER) for CoFe-nanocomposite exhibits 208 mV overpotential at 10 mA/cm2. Moreover, the results improved after phosphorization showing 186 mV to reach 10 mA/cm2. The specific capacitance (Csp) of as-synthesized nanocomposite is 120 F/g at 1 A/g, along with a power density of 3752 W/kg and a maximum energy density of 4.3 Wh/kg. Furthermore, the phosphorized nanocomposite shows the best performance by exhibiting 252 F/g at 1 A/g and the highest power and energy density of 4.2 kW/kg and 10.1 Wh/kg. This shows that the results get improved more than twice. The 97% capacitance retention after 5000 cycles shows cyclic stability of phosphorized CoFe. Our research thus offers cost-effective and highly efficient material for energy production and storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Novel loading protocol combines highly efficient encapsulation of exogenous therapeutic toxin with preservation of extracellular vesicles properties, uptake and cargo activity Viscoelastic modelling and analysis of two-dimensional woven CNT-based multiscale fibre reinforced composite material system InGaN blue resonant cavity micro-LED with RGY quantum dot layer for broad gamut, efficient displays Transport properties of mechanochemically synthesized copper (I) selenide for potential applications in energy conversion and storage Photodynamic impact of curcumin enhanced silver functionalized graphene nanocomposites on Candida virulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1