盒约束压力泊松解的多级活动集预条件

IF 1.4 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on computer graphics and interactive techniques Pub Date : 2023-08-16 DOI:10.1145/3606939
Tetsuya Takahashi, Christopher Peter Batty
{"title":"盒约束压力泊松解的多级活动集预条件","authors":"Tetsuya Takahashi, Christopher Peter Batty","doi":"10.1145/3606939","DOIUrl":null,"url":null,"abstract":"Efficiently solving large-scale box-constrained convex quadratic programs (QPs) is an important computational challenge in physical simulation. We propose a new multilevel preconditioning scheme based on the active-set method and combine it with modified proportioning with reduced gradient projections (MPRGP) to efficiently solve such QPs arising from pressure Poisson equations with non-negative pressure constraints in fluid animation. Our method employs a purely algebraic multigrid method to ensure the solvability of the coarser level systems and to merge only algebraically-connected components, thereby avoiding performance degradation of the preconditioner. We present a filtering scheme to efficiently apply our multilevel preconditioning only to unconstrained subsystems of the pressure Poisson system while reusing the hierarchy constructed per simulation step. We demonstrate the effectiveness of our method over previous approaches in various examples.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":"1 - 22"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers\",\"authors\":\"Tetsuya Takahashi, Christopher Peter Batty\",\"doi\":\"10.1145/3606939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently solving large-scale box-constrained convex quadratic programs (QPs) is an important computational challenge in physical simulation. We propose a new multilevel preconditioning scheme based on the active-set method and combine it with modified proportioning with reduced gradient projections (MPRGP) to efficiently solve such QPs arising from pressure Poisson equations with non-negative pressure constraints in fluid animation. Our method employs a purely algebraic multigrid method to ensure the solvability of the coarser level systems and to merge only algebraically-connected components, thereby avoiding performance degradation of the preconditioner. We present a filtering scheme to efficiently apply our multilevel preconditioning only to unconstrained subsystems of the pressure Poisson system while reusing the hierarchy constructed per simulation step. We demonstrate the effectiveness of our method over previous approaches in various examples.\",\"PeriodicalId\":74536,\"journal\":{\"name\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"volume\":\"6 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3606939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

高效求解大型盒约束凸二次规划是物理仿真中的一个重要计算挑战。我们提出了一种新的基于主动集方法的多级预处理方案,并将其与具有减少梯度投影的修正比例(MPRGP)相结合,以有效地求解流体动画中具有非负压约束的压力泊松方程产生的QPs。我们的方法采用纯代数多重网格方法来确保较粗级别系统的可解性,并仅合并代数连接的分量,从而避免预处理器的性能下降。我们提出了一种滤波方案,以有效地将我们的多级预处理仅应用于压力-泊松系统的无约束子系统,同时重用每个模拟步骤构建的层次结构。我们在各种例子中证明了我们的方法相对于以前的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers
Efficiently solving large-scale box-constrained convex quadratic programs (QPs) is an important computational challenge in physical simulation. We propose a new multilevel preconditioning scheme based on the active-set method and combine it with modified proportioning with reduced gradient projections (MPRGP) to efficiently solve such QPs arising from pressure Poisson equations with non-negative pressure constraints in fluid animation. Our method employs a purely algebraic multigrid method to ensure the solvability of the coarser level systems and to merge only algebraically-connected components, thereby avoiding performance degradation of the preconditioner. We present a filtering scheme to efficiently apply our multilevel preconditioning only to unconstrained subsystems of the pressure Poisson system while reusing the hierarchy constructed per simulation step. We demonstrate the effectiveness of our method over previous approaches in various examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality. A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers Motion In-Betweening with Phase Manifolds NeuroDog A Unified Analysis of Penalty-Based Collision Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1