{"title":"非确定性自动机处理器叠加","authors":"Rasha Karakchi, J. Bakos","doi":"10.1145/3593586","DOIUrl":null,"url":null,"abstract":"Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the core of many big data applications. Recent efforts to develop Domain-Specific Architectures (DSAs) for DFA/NFA have taken divergent approaches, but achieving consistent throughput for arbitrarily-large pattern sets, state activation rates, and pattern match rates remains a challenge. In this article, we present NAPOLY (Non-Deterministic Automata Processor OverLaY), an FPGA overlay and associated compiler. A common limitation of prior efforts is a limit on NFA size for achieving the advertised throughput. NAPOLY is optimized for fast re-programming to permit practical time-division multiplexing of the hardware and permit high asymptotic throughput for NFAs of unlimited size, unlimited state activation rate, and high pattern reporting rate. NAPOLY also allows for offline generation of configurations having tradeoffs between state capacity and transition capacity. In this article, we (1) evaluate NAPOLY using benchmarks packaged in the ANMLZoo benchmark suite, (2) evaluate the use of an SAT solver for allocating physical resources, and (3) compare NAPOLY’s performance against existing solutions. NAPOLY performs most favorably on larger benchmarks, benchmarks with higher state activation frequency, and benchmarks with higher reporting frequency. NAPOLY outperforms the fastest of the CPU and GPU implementations in 10 out of 12 benchmarks.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"16 1","pages":"1 - 25"},"PeriodicalIF":3.1000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NAPOLY: A Non-deterministic Automata Processor OverLaY\",\"authors\":\"Rasha Karakchi, J. Bakos\",\"doi\":\"10.1145/3593586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the core of many big data applications. Recent efforts to develop Domain-Specific Architectures (DSAs) for DFA/NFA have taken divergent approaches, but achieving consistent throughput for arbitrarily-large pattern sets, state activation rates, and pattern match rates remains a challenge. In this article, we present NAPOLY (Non-Deterministic Automata Processor OverLaY), an FPGA overlay and associated compiler. A common limitation of prior efforts is a limit on NFA size for achieving the advertised throughput. NAPOLY is optimized for fast re-programming to permit practical time-division multiplexing of the hardware and permit high asymptotic throughput for NFAs of unlimited size, unlimited state activation rate, and high pattern reporting rate. NAPOLY also allows for offline generation of configurations having tradeoffs between state capacity and transition capacity. In this article, we (1) evaluate NAPOLY using benchmarks packaged in the ANMLZoo benchmark suite, (2) evaluate the use of an SAT solver for allocating physical resources, and (3) compare NAPOLY’s performance against existing solutions. NAPOLY performs most favorably on larger benchmarks, benchmarks with higher state activation frequency, and benchmarks with higher reporting frequency. NAPOLY outperforms the fastest of the CPU and GPU implementations in 10 out of 12 benchmarks.\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"16 1\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3593586\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3593586","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
NAPOLY: A Non-deterministic Automata Processor OverLaY
Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the core of many big data applications. Recent efforts to develop Domain-Specific Architectures (DSAs) for DFA/NFA have taken divergent approaches, but achieving consistent throughput for arbitrarily-large pattern sets, state activation rates, and pattern match rates remains a challenge. In this article, we present NAPOLY (Non-Deterministic Automata Processor OverLaY), an FPGA overlay and associated compiler. A common limitation of prior efforts is a limit on NFA size for achieving the advertised throughput. NAPOLY is optimized for fast re-programming to permit practical time-division multiplexing of the hardware and permit high asymptotic throughput for NFAs of unlimited size, unlimited state activation rate, and high pattern reporting rate. NAPOLY also allows for offline generation of configurations having tradeoffs between state capacity and transition capacity. In this article, we (1) evaluate NAPOLY using benchmarks packaged in the ANMLZoo benchmark suite, (2) evaluate the use of an SAT solver for allocating physical resources, and (3) compare NAPOLY’s performance against existing solutions. NAPOLY performs most favorably on larger benchmarks, benchmarks with higher state activation frequency, and benchmarks with higher reporting frequency. NAPOLY outperforms the fastest of the CPU and GPU implementations in 10 out of 12 benchmarks.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.