坡底上波体相互作用的hamilton Boussinesq模拟

IF 0.9 4区 工程技术 Q4 ENGINEERING, CIVIL International Journal of Offshore and Polar Engineering Pub Date : 2022-06-01 DOI:10.17736/ijope.2022.ak46
R. Kurnia, E. V. van Groesen
{"title":"坡底上波体相互作用的hamilton Boussinesq模拟","authors":"R. Kurnia, E. V. van Groesen","doi":"10.17736/ijope.2022.ak46","DOIUrl":null,"url":null,"abstract":"This paper describes a numerical implementation of a Hamiltonian Boussinesq wave-body interaction for irrotational flow as formulated in van Groesen and Andonowati (2017), with a restriction of one horizontal coordinate and a cross section of the body. Part of the HAWASSI (Hamiltonian Wave-Ship-Structure Interaction) software we developed allows for numerical discretisation of the surface waves using spectral methods. Non-smooth effects from the body-fluid interaction are included in the design of a virtual wave in the body area, which is determined by the boundary conditions on the body hull. Except for a comparison with standard cases in the literature, the performance of the code is shown by comparison with measurements of an experiment on the slow-drift motion of a rectangular barge moored above a sloping beach and interacting with irregular waves, in the barge beam direction, including the infra-gravity waves from the runup on the shore.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hamiltonian Boussinesq Simulation of Wave-Body Interaction Above Sloping Bottom\",\"authors\":\"R. Kurnia, E. V. van Groesen\",\"doi\":\"10.17736/ijope.2022.ak46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a numerical implementation of a Hamiltonian Boussinesq wave-body interaction for irrotational flow as formulated in van Groesen and Andonowati (2017), with a restriction of one horizontal coordinate and a cross section of the body. Part of the HAWASSI (Hamiltonian Wave-Ship-Structure Interaction) software we developed allows for numerical discretisation of the surface waves using spectral methods. Non-smooth effects from the body-fluid interaction are included in the design of a virtual wave in the body area, which is determined by the boundary conditions on the body hull. Except for a comparison with standard cases in the literature, the performance of the code is shown by comparison with measurements of an experiment on the slow-drift motion of a rectangular barge moored above a sloping beach and interacting with irregular waves, in the barge beam direction, including the infra-gravity waves from the runup on the shore.\",\"PeriodicalId\":50302,\"journal\":{\"name\":\"International Journal of Offshore and Polar Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Offshore and Polar Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17736/ijope.2022.ak46\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2022.ak46","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了van Groesen和Andonowati(2017)中提出的无旋流的Hamiltonian Boussinesq波体相互作用的数值实现,该方法受一个水平坐标和体的横截面的限制。我们开发的HAWASSI(哈密顿波浪-船舶结构相互作用)软件的一部分允许使用光谱方法对表面波进行数值离散。体-液相互作用产生的非光滑效应包括在体区虚拟波的设计中,该设计由船体上的边界条件决定。除了与文献中的标准情况进行比较外,该规范的性能是通过与停泊在倾斜海滩上方的矩形驳船的缓慢漂移实验的测量结果进行比较来显示的,该驳船与驳船梁方向上的不规则波浪相互作用,包括来自岸上径流的超重力波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hamiltonian Boussinesq Simulation of Wave-Body Interaction Above Sloping Bottom
This paper describes a numerical implementation of a Hamiltonian Boussinesq wave-body interaction for irrotational flow as formulated in van Groesen and Andonowati (2017), with a restriction of one horizontal coordinate and a cross section of the body. Part of the HAWASSI (Hamiltonian Wave-Ship-Structure Interaction) software we developed allows for numerical discretisation of the surface waves using spectral methods. Non-smooth effects from the body-fluid interaction are included in the design of a virtual wave in the body area, which is determined by the boundary conditions on the body hull. Except for a comparison with standard cases in the literature, the performance of the code is shown by comparison with measurements of an experiment on the slow-drift motion of a rectangular barge moored above a sloping beach and interacting with irregular waves, in the barge beam direction, including the infra-gravity waves from the runup on the shore.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Offshore and Polar Engineering
International Journal of Offshore and Polar Engineering ENGINEERING, CIVIL-ENGINEERING, OCEAN
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world. Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.
期刊最新文献
Comparison of Motions for Intact and Damaged Ships in Head Waves Behavior Analysis of Cavitation Jets for Effective Removal of Organisms Attached to Offshore Structures Response and Power Absorption Assessment of the TALOS Wave Energy Converter in Time Domain Hybrid Method for Large Diameter Spool Vortex-Induced and Flow-Induced Vibration Analysis Simplified Design Formula for Tensile Axial Strain of Buried Pipeline Subjected to a Liquefaction-Induced Lateral Landslide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1