大规模无线网络数据分析研究:在线流处理、趋势和挑战

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Internet Services and Applications Pub Date : 2020-03-18 DOI:10.21203/rs.3.rs-17789/v1
Dianne S. V. Medeiros, H. N. C. Neto, Martin Andreoni Lopez, Luiz Claudio S. Magalhães, N. Fernandes, A. Vieira, E. F. Silva, D. M. F. Mattos
{"title":"大规模无线网络数据分析研究:在线流处理、趋势和挑战","authors":"Dianne S. V. Medeiros, H. N. C. Neto, Martin Andreoni Lopez, Luiz Claudio S. Magalhães, N. Fernandes, A. Vieira, E. F. Silva, D. M. F. Mattos","doi":"10.21203/rs.3.rs-17789/v1","DOIUrl":null,"url":null,"abstract":"In this paper we focus on knowledge extraction from large-scale wireless networks through stream processing. We present the primary methods for sampling, data collection, and monitoring of wireless networks and we characterize knowledge extraction as a machine learning problem on big data stream processing. We show the main trends in big data stream processing frameworks. Additionally, we explore the data preprocessing, feature engineering, and the machine learning algorithms applied to the scenario of wireless network analytics. We address challenges and present research projects in wireless network monitoring and stream processing. Finally, future perspectives, such as deep learning and reinforcement learning in stream processing, are anticipated.","PeriodicalId":46467,"journal":{"name":"Journal of Internet Services and Applications","volume":"11 1","pages":"1-48"},"PeriodicalIF":2.4000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A survey on data analysis on large-Scale wireless networks: online stream processing, trends, and challenges\",\"authors\":\"Dianne S. V. Medeiros, H. N. C. Neto, Martin Andreoni Lopez, Luiz Claudio S. Magalhães, N. Fernandes, A. Vieira, E. F. Silva, D. M. F. Mattos\",\"doi\":\"10.21203/rs.3.rs-17789/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we focus on knowledge extraction from large-scale wireless networks through stream processing. We present the primary methods for sampling, data collection, and monitoring of wireless networks and we characterize knowledge extraction as a machine learning problem on big data stream processing. We show the main trends in big data stream processing frameworks. Additionally, we explore the data preprocessing, feature engineering, and the machine learning algorithms applied to the scenario of wireless network analytics. We address challenges and present research projects in wireless network monitoring and stream processing. Finally, future perspectives, such as deep learning and reinforcement learning in stream processing, are anticipated.\",\"PeriodicalId\":46467,\"journal\":{\"name\":\"Journal of Internet Services and Applications\",\"volume\":\"11 1\",\"pages\":\"1-48\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-17789/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-17789/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 22

摘要

本文主要研究了基于流处理的大规模无线网络知识提取。我们提出了无线网络采样、数据收集和监测的主要方法,并将知识提取描述为大数据流处理中的机器学习问题。我们展示了大数据流处理框架的主要趋势。此外,我们还探讨了应用于无线网络分析场景的数据预处理、特征工程和机器学习算法。我们提出了无线网络监测和流处理方面的挑战和研究项目。最后,展望了流处理中的深度学习和强化学习等未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey on data analysis on large-Scale wireless networks: online stream processing, trends, and challenges
In this paper we focus on knowledge extraction from large-scale wireless networks through stream processing. We present the primary methods for sampling, data collection, and monitoring of wireless networks and we characterize knowledge extraction as a machine learning problem on big data stream processing. We show the main trends in big data stream processing frameworks. Additionally, we explore the data preprocessing, feature engineering, and the machine learning algorithms applied to the scenario of wireless network analytics. We address challenges and present research projects in wireless network monitoring and stream processing. Finally, future perspectives, such as deep learning and reinforcement learning in stream processing, are anticipated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Services and Applications
Journal of Internet Services and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
13 weeks
期刊最新文献
Load Balancing between Paths using Software Defined Networks Predictive Fraud Detection: An Intelligent Method for Internet of Smart Grid Things Systems An Approach to Remote Update Embedded Systems in the Internet of Things NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1