{"title":"显微特征和非靶向代谢组学揭示了裂心材黑色花纹的特殊特征。","authors":"Zhi Li, Rui Yang, Xiaorui Yang, Huiwen Jia, Jian Qiu","doi":"10.1080/02773813.2023.2229300","DOIUrl":null,"url":null,"abstract":"Abstract Spalted heartwood is valued for its vibrant colors, patterns, and decay-free appearance. Using microscopy, scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and non-targeted metabolomics, we aimed to study some distinctive features of black patterning. The results showed that cocci might be associated with the production of spalted heartwood. There was an absence of decay in the spalted heartwood because the cocci had not aggressively attacked the cell walls. 4-pyridoxine, often associated with the bacterial stimulation of organisms, was identified as an upregulated metabolite in the black-patterned wood compared to non-colored areas. We identified four primary metabolic pathways related to bacterial activity associated with the black patterning: pentose and glucuronate interconversions, ATP-binding cassette transporters, histidine metabolism, and plant hormone signal transduction. These results suggest that microbes might play a significant role in the development of the heartwood’s distinctive black pattern in Diospyros spp.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"43 1","pages":"243 - 252"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic features and untargeted metabolomics reveal special features of the black-patterning in spalted heartwood of Diospyros spp.\",\"authors\":\"Zhi Li, Rui Yang, Xiaorui Yang, Huiwen Jia, Jian Qiu\",\"doi\":\"10.1080/02773813.2023.2229300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Spalted heartwood is valued for its vibrant colors, patterns, and decay-free appearance. Using microscopy, scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and non-targeted metabolomics, we aimed to study some distinctive features of black patterning. The results showed that cocci might be associated with the production of spalted heartwood. There was an absence of decay in the spalted heartwood because the cocci had not aggressively attacked the cell walls. 4-pyridoxine, often associated with the bacterial stimulation of organisms, was identified as an upregulated metabolite in the black-patterned wood compared to non-colored areas. We identified four primary metabolic pathways related to bacterial activity associated with the black patterning: pentose and glucuronate interconversions, ATP-binding cassette transporters, histidine metabolism, and plant hormone signal transduction. These results suggest that microbes might play a significant role in the development of the heartwood’s distinctive black pattern in Diospyros spp.\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"43 1\",\"pages\":\"243 - 252\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2023.2229300\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2023.2229300","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Microscopic features and untargeted metabolomics reveal special features of the black-patterning in spalted heartwood of Diospyros spp.
Abstract Spalted heartwood is valued for its vibrant colors, patterns, and decay-free appearance. Using microscopy, scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, and non-targeted metabolomics, we aimed to study some distinctive features of black patterning. The results showed that cocci might be associated with the production of spalted heartwood. There was an absence of decay in the spalted heartwood because the cocci had not aggressively attacked the cell walls. 4-pyridoxine, often associated with the bacterial stimulation of organisms, was identified as an upregulated metabolite in the black-patterned wood compared to non-colored areas. We identified four primary metabolic pathways related to bacterial activity associated with the black patterning: pentose and glucuronate interconversions, ATP-binding cassette transporters, histidine metabolism, and plant hormone signal transduction. These results suggest that microbes might play a significant role in the development of the heartwood’s distinctive black pattern in Diospyros spp.
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.