{"title":"多元非线性回归中学习不精确数据的二次误差函数的推广","authors":"C. Hounmenou, K. Gneyou, R. G. Glèlè Kakaï","doi":"10.1155/2020/9187503","DOIUrl":null,"url":null,"abstract":"Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9187503","citationCount":"0","resultStr":"{\"title\":\"An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression\",\"authors\":\"C. Hounmenou, K. Gneyou, R. G. Glèlè Kakaï\",\"doi\":\"10.1155/2020/9187503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/9187503\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/9187503\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9187503","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.