{"title":"离子束辅助运输中空间碎片有效姿态运动模式的确定","authors":"A. Ledkov","doi":"10.2514/1.a35735","DOIUrl":null,"url":null,"abstract":"Contactless space debris transportation systems based on the use of an ion beam are a promising direction among active space debris removal systems. The magnitude of the force generated by the ion beam depends on the orientation of the space debris object in the ion beam created by an active spacecraft. During the ion transport process, the space debris object can oscillate or rotate, which leads to a change in the generated force. The aim of this study is to develop an algorithm for determining the attitude motion mode of space debris, which is most favorable for its contactless transportation. The time-averaged generated ion force is used as the performance index. A simplified system of equations describing the spatial motion of a cylindrical axisymmetric object in a circular orbit is obtained. A generalized energy integral is found. An algorithm for determining the most favorable angular motion mode of a space debris object is developed. A numerical study of a cylindrical space debris object attitude motion under the action of an ion torque is carried out. The favorable attitude motion mode is determined, and the average forces in the most favorable and unfavorable modes are compared.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Effective Space Debris Attitude Motion Modes for Ion-Beam-Assisted Transportation\",\"authors\":\"A. Ledkov\",\"doi\":\"10.2514/1.a35735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contactless space debris transportation systems based on the use of an ion beam are a promising direction among active space debris removal systems. The magnitude of the force generated by the ion beam depends on the orientation of the space debris object in the ion beam created by an active spacecraft. During the ion transport process, the space debris object can oscillate or rotate, which leads to a change in the generated force. The aim of this study is to develop an algorithm for determining the attitude motion mode of space debris, which is most favorable for its contactless transportation. The time-averaged generated ion force is used as the performance index. A simplified system of equations describing the spatial motion of a cylindrical axisymmetric object in a circular orbit is obtained. A generalized energy integral is found. An algorithm for determining the most favorable angular motion mode of a space debris object is developed. A numerical study of a cylindrical space debris object attitude motion under the action of an ion torque is carried out. The favorable attitude motion mode is determined, and the average forces in the most favorable and unfavorable modes are compared.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35735\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35735","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Determining the Effective Space Debris Attitude Motion Modes for Ion-Beam-Assisted Transportation
Contactless space debris transportation systems based on the use of an ion beam are a promising direction among active space debris removal systems. The magnitude of the force generated by the ion beam depends on the orientation of the space debris object in the ion beam created by an active spacecraft. During the ion transport process, the space debris object can oscillate or rotate, which leads to a change in the generated force. The aim of this study is to develop an algorithm for determining the attitude motion mode of space debris, which is most favorable for its contactless transportation. The time-averaged generated ion force is used as the performance index. A simplified system of equations describing the spatial motion of a cylindrical axisymmetric object in a circular orbit is obtained. A generalized energy integral is found. An algorithm for determining the most favorable angular motion mode of a space debris object is developed. A numerical study of a cylindrical space debris object attitude motion under the action of an ion torque is carried out. The favorable attitude motion mode is determined, and the average forces in the most favorable and unfavorable modes are compared.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.